博碩士論文 109521126 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:13.58.200.16
姓名 林育賢(Yu-Hsien Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 全氧化鋅熱電材料開發及元件製作
(Development of Zinc Oxide Thermoelectric Materials and Device Fabrication)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 世界各地愈來愈重視全球暖化與溫室效應,而紛紛在探索對環境友善且環保的替代能源。熱電材料則是一個不錯的替代選項,它是一種能在熱能以及電能之間轉換的材料,利用溫度差來產生電能以提高能源使用的效率,因此可以應用於像是汽車的廢熱回收、太空科技或者穿戴式裝置上。
而不同材料有著不同的熱電特性,氧化物半導體因為其良好的化學穩定性、熱穩定性、無毒及低成本而成為一種很有前途的熱電材料。
本論文研究氧化鋅材料,經由摻雜不同比例的磷,使其成為P-type材料。我們發現以0.192 at%比例的磷摻雜至氧化鋅中,具有最佳之熱電特性。選擇最佳的摻雜比例及退火參數後,進行後續接觸金屬及電極的測試。最後使其與N-type氧化鋅建構成熱電元件,並在不同溫度下量測其輸出功率。
摘要(英) The world has been paying attention to global warming and the greenhouse effect in these days, and the renewable energy sources have been explored. Thermoelectric material is a good alternative option for energy source. It is a material that can convert thermal energy into electrical energy. It requires temperature difference to generate electrical energy. For example, it can be applied to automobiles, space technology or wearable devices.
Different materials have different thermoelectric performance. Oxide semiconductors have become a promising thermoelectric material because of their good chemical stability, thermal stability, non-toxicity and abundance in earth, despite their low ZT.
Zinc Oxide material is studied in this work, and it becomes a P-type material by doping phosphorus. We found that 0.192 at% phosphorus doping into Zinc Oxide demonstrates the best thermoelectric properties. By the optimal doping concentration and annealing conditions, metal contact and electrode were tested. Finally, a device by a n-type and a p-type zinc oxide was made, and its output power was measured at different temperatures.
關鍵字(中) ★ 熱電
★ 熱電材料
★ 熱電元件
★ 氧化鋅
關鍵字(英)
論文目次 摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 viii
表目錄 xiii
1 第一章 緒論 1
1-1 前言 1
1-2 氧化鋅(ZnO)介紹及文獻回顧 2
1-2-1 基本性質與摻雜 2
1-2-2 氧化鋅之熱電領域發展[5] 3
1-2-3 P-type氧化鋅近期研究[11] 3
1-3 熱電材料應用 4
1-4 研究動機 5
2 第二章 熱電基礎與理論 6
2-1 熱電效應 6
2-1-1 席貝克效應(Seebeck effect) 6
2-1-2 帕爾帖效應(Peltier effect) 7
2-1-3 湯姆森效應(Thomson effect) 8
2-2 熱導率(Thermal Conductivity) 9
2-3 熱電優值(Thermoelectric figure of merit) 10
2-4 熱電轉換效率 11
2-5 熱電材料分類 12
3 第三章 實驗步驟與儀器 13
3-1 開發步驟 13
3-2 實驗流程 15
3-3 實驗方法 16
3-3-1 奈米級氧化鋅(ZnO)粉末製備 16
3-3-2 P-type及N-type氧化鋅粉末製備 18
3-3-3 聚乙烯純溶液(Binder)製備 19
3-3-4 P-type及N-type氧化鋅塊材製備 20
3-3-5 P-type及N-type氧化鋅接觸金屬測試及單一輸出試片製作 21
3-3-6 熱電元件製作 22
3-4 量測儀器與方法 23
3-4-1 電導率量測 23
3-4-2 席貝克係數量測 25
3-4-3 密度量測 26
3-4-4 熱擴散量測 27
3-4-5 比熱量測 28
3-4-6 掃描式電子顯微鏡 29
3-4-7 粉末X光繞射儀 30
3-4-8 單一輸出試片及熱電元件電性量測 31
4 第四章 實驗結果分析與討論 33
4-1 前言 33
4-2 P-type氧化鋅塊材製程參數及量測 33
4-2-1 ZnO摻雜0.024 at% P 33
4-2-2 ZnO摻雜0.24~1.44 at% P 36
4-2-3 ZnO摻雜0.024~0.192 at% P 39
4-3 P-type氧化鋅接觸金屬測試製程參數及量測 45
4-3-1 試片表面塗鎳膠 45
4-3-2 試片表面塗鎳膠再墊鎳片 45
4-3-3 試片表面塗鎳膠再墊銅片 46
4-3-4 試片表面塗鎳膠先墊銅片再墊鎳片 47
4-3-5 試片先墊銅片再墊鎳片 47
4-3-6 粉末與鎳片置於模具一起冷壓 48
4-3-7 粉末與銅片及鎳片置於模具一起冷壓 49
4-3-8 粉末與預先塗鎳膠之鎳片置於模具一起冷壓 49
4-3-9 粉末與預先塗鎳膠之銅片置於模具一起冷壓 50
4-3-10 粉末與預先塗鎳膠之銅片置於模具一起冷壓再墊鎳片 51
4-4 N-type氧化鋅接觸金屬測試製程參數及量測 54
4-4-1 試片表面塗銀漿 54
4-4-2 試片表面先塗銀漿再塗鎳膠 55
4-4-3 試片表面塗銀漿再墊鎳片 55
4-4-4 試片表面塗銀漿先墊銅片再墊鎳片 56
4-4-5 粉末與預先塗銀漿之鎳片置於模具一起冷壓 57
4-4-6 粉末與預先塗銀漿之銅片置於模具一起冷壓再墊鎳片 58
4-5 P-type及N-type氧化鋅單一輸出試片製程參數 61
4-6 全氧化鋅熱電元件製程參數 63
4-7 單一輸出試片及全氧化鋅熱電元件量測 65
5 第五章 結論與未來展望 70
參考文獻 71
參考文獻 [1] 出自於:https://research.sinica.edu.tw/thermoelectric-materials-cheny2/
[2] 陳洋元、陳正龍, "熱電於再生能源之運用", 物理雙月刊 https://pb.ps-taiwan.org/modules/news/article.php?storyid=59
[3] 游皓任, "穿戴裝置的未來新能源—可撓式熱電晶片", 科學月刊第578期, 2018.
[4] Naif H. Al-Hardan, Muhammad Azmi Abdul Hamid, Roslinda Shamsudin and Norinsan Kamil Othman, "Ultraviolet Sensors Based on Two-Dimensional Zinc Oxide Structures", 2016.
[5] Mohammed M. A., Izman Sudin, Alias Mohd Noor, Srithar Rajoo, Uday M. B., Noor H. Obayes, Muhammad Firdaus Omar, " A review of thermoelectric ZnO nanostructured
ceramics for energy recovery", 2018.
[6] T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, "Thermoelectric properties of Al-doped ZnO as a promising oxidematerial for high-temperature thermoelectric conversion," Journal of Materials Chemistry, vol. 7, no. 1, pp. 85-90, 1997.
[7] M. Ohtaki, K. Araki, and K. Yamamoto, "High thermoelectric performance of dually doped ZnO ceramics," Journal of Electronic Materials, vol. 38, no. 7, pp. 1234-1238, 2009.
[8] S. Jantrasee, P. Moontragoon, and S. Pinitsoontorn, "Thermoelectric properties of Al-doped ZnO: experiment and simulation," Journal of Semiconductors, vol. 37, no. 9, p. 092002, 2016.
[9] I. Koresh and Y. Amouyal, "Effects of microstructure evolution on transport properties of thermoelectric nickel-doped zinc oxide," Journal of the European Ceramic Society, vol. 37, no. 11, pp. 3541-3550, 2017.

[10] K. Park, J. Seong, and S. Nahm, "Improvement of thermoelectric properties with the addition of Sb to ZnO," Journal of Alloys and Compounds, vol. 455, no. 1, pp. 331-335, 2008.
[11] Hassan Ahmoum, Guojian Li, Yang Jin, Mourad Boughrara, Mohd Sukor Su’ait, Siddheshwar Chopra, D. P. Rai, Mohamed Kerouad, Qiang Wang, " Doping dependent on the p-type thermoelectric properties of ZnO: First principal calculation", 2020.
[12] W. W. Liu, C. L. Liu, X. B. Chen, J. H. Lu, H. X. Chen, Z. Z Miao, "Physics Letters A", 384(8) (2020) 126172.
[13] H. Ahmoum, M. Boughrara, M.S. Su′ait, S. Chopra, M. Kerouad, "Physica B: Condensed Matter", 560 (2019) 28.
[14] H. Ahmoum, M. Boughrara, M. S. Su’ait, M. Kerouad, "Chemical Physics Letters", 719 (2019) 45.
[15] Y.Zhao, M. Zhou, Z. Lv, Z. Li, J. Huang, X. Liang, J. Min, "Materials Science in Semiconductor Processing", 14 (2011) 257.
[16] 黃振東、徐振庭, "熱電材料", 科學發展月刊 486 期, 2013.
[17] 朱旭山, "熱電材料與元件之原理與應用", 工業材料雜誌220期, 2005.
[18] 出自於:https://qdsmad.en.made-in-china.com/product/ASaEJYqHRLVu/China-48L-Auto-Defrost-Thermoelectric-Refrigerator-Hotel-Mini-Bar-Refrigerator.html
[19] J.C. Zheng, "Recent advances on thermoelectric materials", Front. Phys. China 3 (3) (2008) 269–279
[20] S.Kodeeswaran, T.Ramkumar, R.Jai Ganesh, " Precise Temperature Control Using Reverse Seebeck Effect", 2017.
[21] HoSung Lee, "Thermoelectrics: Design and Materials", 2016.
[22] 魏百駿, "導電但不導熱:夢幻的熱電材料「二氧化釩」", 科學月刊 2017 年 4 月號, 2017.
[23] Chao Han, Zhen Li, Shixue Dou, " Recent progress in thermoelectric materials", 2014.
[24] 出自於:https://chemgroups.northwestern.edu/kanatzidis/greatthermo.html
[25] "Thermal Diffusivity and the Laser Flash Method." https://www.jove.com/pdf/10488/jove-protocol-10488-thermal-diffusivity-and-the-laser-flash-method
[26] "熱分析-DSC 熱示差掃瞄卡量計(DSC)原理." https://www.techmaxasia.com/knowledge-detail/DSC-20080112/
[27] 羅聖全, "科學基礎研究之重要利器——掃瞄式全電子顯微鏡(SEM)," 科學研習月刊, 2013.
[28] 楊仲準, "X 光繞射分析技術與應用," 科儀新知, 2011. [Online]. Available: https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/182/01820640.pdf.
指導教授 辛正倫 審核日期 2022-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明