博碩士論文 109521603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.118.252.182
姓名 岑文山(Wen-Shan Cen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於適應性徑向基神經網路與非奇異快速終端滑模控制結合線上延遲估測器應用於二軸機械臂運動軌跡精確控制
(Adaptive Radial Basis NN Based Non-Singular Fast Terminal Sliding Mode Control with Time Delay Estimator for Precise Control of Dual-Axis Manipulator)
相關論文
★ 新型三維光學影像量測系統之設計與控制★ 新型雙紐線軌跡設計與進階控制實現壓電平台快速與精確定位
★ 基於深度座標卷積與自動編碼器給予行人實時路徑及終點位置精確預測★ 修正式雙紐線軌跡結合自適應積分終端滑動模態控制與逆模型遲滯補償實現壓電平台精確追蹤
★ 以粒子群最佳化-倒傳遞類神經網路-比例積分微分控制器和影像金字塔轉換融合方法實現三維光學顯微影像系統★ 以局部熵亂度分布與模板匹配方法結合自適應ORB特徵提取達成多影像精確拼接
★ 低扭矩機械手臂機構開發與脈寬調變進階控制器設計★ 使用時域門控與梅森增益公式構建四埠夾具的散射參數表徵
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 工業機械手臂具有全天候工作,維護成本低,生產效率高等優點,已經被廣泛的應用於人類的工廠自動化生產,它在提高企業的生產力同時也可以降低生產所需成本,但如何精確的控制機械手臂追蹤期望軌跡,是目前機械手臂控制過程中不可被忽視的問題。為了保證追蹤過程中的精確度和穩定性,一個强大的控制器是不可或缺的,同時在控制器的設計過程中,如果能夠得知機械手臂的精確模型,就可以降低控制器的設計難度。因此,如何建立一個精確的機械手臂模型也是極需解決的重要議題。在本論文中,將從模型和控制器兩個方面同時著手,來克服二軸機械手臂的追蹤精度和穩定性問題。首先,我們基於二軸機械手臂的標稱動態模型,綜合考慮各種干擾因素,包含模型不確定性、摩擦力、齒輪背隙等,建立出一個增強型的二軸機械手臂動態模型,可在減小控制器設計難度的同時也可以降低未知干擾的大小問題。其次,在所建立的增強型二軸機械臂動態模型的基礎上,將干擾因素分為兩部分考慮,負載部分使用適應性徑向基神經網路控制器處理,負載之外的其他干擾則由時間延遲估計器來估測,藉此減少對控制器參數的依賴,更進一步通過非奇異快速終端滑模控制器來調整輸出控制訊號,藉此來降低外部干擾可能產生的影響。最後,我們設計了兩種不同的模擬環境,並透過多種典型的控制方法比較,來證明此論文所提出的控制器之有效性和優越性。
摘要(英) Industrial robotic manipulator has the advantages of all-weather work, low maintenance costs, high production efficiency, has been widely used in the human factory automation production, it can improve the productivity of enterprises as well as reduce the cost of production required. However, how to precisely control the manipulator to track the desired trajectory is a crucial problem that cannot be ignored during the operation of the manipulator. In order to guarantee the accuracy and stability of the tracking process, a powerful controller is indispensable. Also, during the design process of the controller, if we can know the precise model of the robot arm, the difficulty of the controller design can be significantly reduced. Therefore, a precise model of the robotic manipulator is also an important issue to be solved. In this thesis, we will focus on both the model and the controller to overcome the tracking accuracy and stability problems of the dual-axis manipulator. Firstly, based on the nominal dynamic model of the dual-axis manipulator, we integrated various interference factors, including model uncertainties, frictions, backlash of gears, etc., to build an enhanced dynamic model of the dual-axis manipulator, which can reduce the size of unknown interferences while reducing the difficulty of controller design. Secondly, based on the developed enhanced dual-axis manipulator dynamic model, the interference factors is separated into two parts, the payload part is handled by an adaptive radial basis neural network (ARBFNN) controller, and the other interferences except the payload is estimated by the time delay estimator (TDE) to reduce the dependence on the controller parameters, and furthermore, the control signal is output by the non-singular fast terminal sliding mode controller (NFTSMC) to reduce the possible effect of external interference. Finally, we design two different simulations and demonstrate the effectiveness and superiority of the controller proposed in this paper by comparing it with various traditional control methods.
關鍵字(中) ★ 二軸機械手臂
★ 增強型動態模型
★ 徑向基神經網路控制
★ 時間延遲估測器
★ 非奇異快速終端滑模控制
關鍵字(英)
論文目次 摘要 i
Abstract iii
誌謝 v
Table of Content vi
List of Figures vii
List of Tables ix
Explanation of Symbols x
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 3
1.2.1 Manipulator Trajectory Control Method 3
1.2.2 Backlash 9
1.3 Contribution 12
1.4 Thesis Organization 14
Chapter 2 Preliminaries 15
2.1 Basic Principle of Dynamic about Manipulator 15
2.1.1 Newton-Euler Formulation 16
2.1.2 Lagrangian Formulation 19
2.1.3 Structure of Dynamic Model 20
2.2 Radial Basis Neural Network 21
2.3 Sliding Mode Control 23
Chapter 3 Enhanced Dynamic Model Design 26
3.1 Conventional Manipulator Dynamic Model 26
3.2 Backlash Model 31
3.3 Enhanced Model for Dual-axis Manipulator 33
Chapter 4 Controller Design 34
4.1 Adaptive Radial Basis NN-based Non-singular Fast Terminal Sliding Model Control with Time Delay Estimator 34
4.1.1 Control Algorithm 35
4.1.2 Stability Analysis 42
Chapter 5 Simulations 44
5.1 Simulation Setup 44
5.2 Simulation Results with Basic Model 48
5.3 Simulation results with Mycobot Model 57
Chapter 6 Conclusions 71
Reference 73
參考文獻 [1] J. S. Ming and H. X. Huan, “Review of development and application of industrial robot technology,” Journal of mechanical & electrical engineering, vol. 32, no. 1, pp. 1-13, 2015.
[2] L. M. Zhou, F. Jian, and Z. J. Hai, “The development and the application of the industrial robot technology,” Machine Building & Automation, vol. 44, no. 1, pp. 1-4, 2014.
[3] Y. X. Su, P. C. Müller, and C. Zheng, “Global asymptotic saturated pid control for robot manipulators,” IEEE Transactions on control systems technology, vol. 18, no. 6, pp. 1280-1288, 2010.
[4] J. I. M. Martínez, “Robust grbf static neuro controller with switch logic for control of robot manipulators,” IEEE Transactions on neural networks and learning systems, vol. 23, no. 7, pp. 1053-1064, 2012.
[5] R. J. Wai and R. Muthusamy, “Fuzzy-neural-network inherited sliding-mode control for robot manipulator including actuator dynamics,” IEEE Transactions on neural networks and learning systems, vol. 24, no. 2, pp. 274-287, 2013.
[6] Y. K. Zhu, J. Qiao, Y. Zhang, and L. Guo, “High-precision trajectory tracking control for space manipulator with neutral uncertainty and dead zone nonlinearity,” IEEE Transactions on control system technology, vol. 27, no. 5, pp. 2254-2262, 2019.
[7] W. He, Y. H. Chen, and Z. Yin, “Adaptive neural network control of an uncertain robot with full-state constraints,” IEEE Transactions on cybernetics, vol. 46, no. 3, pp. 620-628, 2016.
[8] M. Van, M. Mavrovouniotis, and S. S. Ge, “An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault-tolerant control of robot manipulators,” IEEE transactions on systems, man, and cybernetics: systems, vol. 49, no. 7, pp. 1-11, 2019.
[9] L. Dai, Y. T. Yu, D. H. Zhai, T. Huang, and Y. Q. Xia, “Robust model predictive tracking control for robot manipulators with disturbances,” IEEE Transactions on industrial electronics, vol. 68, no. 5, pp. 4288-4297, 2021.
[10] Q. Liu, D. Y. Li, S. S. Ge, R. H. Ji, Z. Ouyang, and K. P. Tee, “Adaptive bias rbf neural network control for a robotic manipulator,” Neurocomputing, vol. 447, pp. 213-223, 2021.
[11] M. X. Sun, S.S. Ge, and I. M. Y. Mareels, “Adaptive repetitive learning control of robotic manipulators without the requirement for initial repositioning,” IEEE Transactions on robotics, vol. 22, no. 3, pp. 563-568, 2006.
[12] Z. Y. Li, J. Y. Zhai, and H. R. Karimi, “Adaptive finite-time super-twisting sliding mode control for robotic manipulators with control backlash,” International journal of robust nonlinear control, vol. 31, no. 17, pp. 8537-8550, 2021.
[13] S. A. Abhari, F. Hashemzadeh, M. Baradarannia, and H. Kharrati, “An adaptive robust control scheme for robot manipulators with unknown backlash nonlinearity in gears,” Transactions of the institute of measurement and control, vol. 41, no. 10, pp. 2789-2802, 2019.
[14] F. F. Meng, L. Zhao, and J. P. Yu, “Backstepping based adaptive finite-time tracking control of manipulator systems with uncertain parameters and unknown backlash,” Journal of the franklin institute, vol. 357, no. 16, pp. 11281-11297, 2020.
[15] X. Y. Zhou, H. P. Wang, Y. Tian, and G. Zheng, “Disturbance observer-based adaptive boundary iterative learning control for a rigid-flexible manipulator with input backlash and endpoint constraint,” International journal of adaptive control and signal processing, vol. 34, no. 9, pp. 1220-1241, 2020.
[16] J. Y. S. Luh, M. W. Walker, and R. P. C. Paul, “On-line computational scheme for mechanical manipulators,” Journal of dynamic systems, measurement, and control, vol. 102, no. 2, pp. 69-76, 1980.
[17] J. J. Craig, Introduction to robotics: Mechanics and control, 4nd ed. Pearson Education Press, 2018.
[18] C. S. K. Dash, A. K. Behera, S. Dehuri, and S. B. Cho, “Radial basis function neural networks: a topical state-of-the-art survey,” Open computer science, vol. 6, no. 1, pp. 33-63, 2016.
[19] P. Strumiłło and W. Kamiński, “Radial basis function neural networks: theory and applications,” Neural Networks and Soft Computing, vol. 19, pp. 107-119, 2003.
[20] J. Y. Hung, W. B. Gao, and J. C. Hung, “Variable structure control: a survey,” IEEE Transactions on industrial electronics, vol. 40, no. 1, pp. 2-22, 1993.
[21] C. X. Wang, J. W. Tang, B. P. Jiang, and Z. T. Wu, “Sliding-mode variable structure control for complex automatic systems: a survey,” Mathematical biosciences and engineering, vol. 19, no. 3, pp. 2616-2640, 2022.
[22] A. Pisano and E. Usai, “Sliding mode control: a survey with applications in math,” Mathematics and computers in simulation, vol. 81, no. 5, pp. 954-979, 2011.
[23] https://chinese.alibaba.com/product-detail/robot-arm-gearbox-robot-rv-reducer-1600166967204.html.
[24] http://www.iacnet.com.tw/m/406-1372-46857,r1445.php.
[25] J. B. Jonker, R. R. Waiboer, and R. Aarts, “Modelling of joint friction in robotic manipulators with gear transmissions,” Multibody dynamics computational methods and applications, vol. 4, pp. 221-243, 2007.
[26] M. R. Kermani, R.V. Patel, and M. Moallem, “Friction identification in robotic manipulators: case studies,” Proceedings of 2005 IEEE Conference on Control Applications, Toronto, ON, Canada, August. 28-31, 2005.
[27] http://m.made-in-china.com/product/Automatic-Palletizing-Manipulator-Bulidin-Meterial-Packaging-Machine-Machine-813282455.html.
[28] M. Nordin and P. O. Gutmanb, “Controlling mechanical systems with backlash—a survey,” Automatica, vol. 38, no. 10, pp. 1633-1649, 2002.
[29] J. Vörös, “Modeling and identification of systems with backlash,” Automatica, vol. 46, no. 2, pp. 369-374, 2010.
[30] G. Y. Lai, Z. Liu, Y. Zhang, and C. L. P. Chen, “Adaptive fuzzy tracking control of nonlinear systems with asymmetric actuator backlash based on a new smooth inverse,” IEEE Transactions on cybernetics, vol. 46, no. 6, pp. 1250-1262, 2016.
[31] S. Zhang, P. X. Yang, L. H. Kong, W. S. Chen, Q. Fu, and K. X. Peng, “Neural networks-based fault tolerant control of a robot via fast terminal sliding mode,” IEEE Transactions on systems, man, and cybernetics: systems, vol. 51, no. 7, pp. 4091-4101, 2021.
[32] D. T. Tran, H. V. A. Truong, and K. K. Ahn, “Adaptive nonsingular fast terminal sliding mode control of robotic manipulator based neural network approach,” International journal of precision engineering and manufacturing, vol.22, pp.417-429, 2021.
[33] W. He, B. Huang, Y. T. Dong, Z. J. Li, and C. Y. Su, “Adaptive neural network control for robotic manipulators with unknown deadzone,” IEEE Transactions on cybernetics, vol. 48, no. 9, pp. 2670-2682, 2018.
[34] W. He, Y. H. Chen, and Z. Yin, “Adaptive neural network control of an uncertain robot with full-state constraints,” IEEE Transactions on cybernetics, vol. 46, no. 3, pp. 620-629, 2016.
[35] M. Van, S. S. Ge, and H. L. Ren, “Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control,” IEEE Transactions on cybernetics, vol. 47, no. 7, pp. 1681-1693, 2017.
[36] S. S. Xu, C. C. Chen, and Z. L. Wu, “Study of nonsingular fast terminal sliding-mode fault-tolerant control,” IEEE Transactions on industrial electronics, vol. 62, no. 6, pp. 3906-3913, 2015.
[37] S. Ahmed, H. P. Wang, and Y. Tian, “Adaptive high-order terminal sliding mode control based on time delay estimation for the robotic manipulators with backlash hysteresis,” IEEE Transactions on systems, man, and cybernetics: systems, vol. 51, no. 2, pp.1128-1137, 2021.
[38] K. Y. Toumi and O. Ito, “A time delay controller for systems with unknown dynamics,” 1988 American Control Conference, Atlanta, GA, USA, June. 15-17, 1988.
[39] N. Anđelić, I. Lorencin, V. Mrzljak, and Z. Car1, “Friction modeling of robot manipulator joints,” International conference on innovative technologies, Belgrade, Serbia, September. 11-13, 2019.
[40] https://docs.elephantrobotics.com/docs/gitbook/.
指導教授 吳俊緯(Jim-Wei Wu) 審核日期 2022-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明