參考文獻 |
英文文獻
Akerlof, G.A., 1970. The Market for “Lemons”: Quality Uncertainty and the Market Mechanism. Q. J. Econ. 84, 488–500. https://doi.org/10.2307/1879431
Akkor, D., Ozyuksel, S., 2020. THE EFFECTS OF NEW TECHNOLOGIES ON THE INSURANCE SECTOR: A PROPOSITION FOR UNDERWRITING QUALIFICATIONS FOR THE FUTURE. Eurasian J. Bus. Manag. 8, 36–50. https://doi.org/10.15604/ejbm.2020.08.01.004
B, J.H., 2020. Risk Level Prediction of Life Insurance Applicant using Machine Learning. Int. J. Adv. Trends Comput. Sci. Eng. 9, 2213.
Biddle, R., Liu, S., Tilocca, P., Xu, G., 2018. Automated Underwriting in Life Insurance: Predictions and Optimisation, in: Databases Theory and Applications. Presented at the Australasian Database Conference, Springer, Cham, pp. 135–146. https://doi.org/10.1007/978-3-319-92013-9_11
Boodhun, N., Jayabalan, M., 2018. Risk prediction in life insurance industry using supervised learning algorithms. Complex Intell. Syst. 4, 145–154. https://doi.org/10.1007/s40747-018-0072-1
Bozyi̇Ği̇T, F., Şahi̇N, M., Gündüz, T., Işik, C., Kilinç, D., 2020. REGRESSION BASED RISK ANALYSIS IN LIFE INSURANCE INDUSTRY. Int. J. Eng. Innov. Res. 2, 178–184. https://doi.org/10.47933/ijeir.745343
Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324
Cassimiro, J.C., Santana, A.M., Neto, P.S., Rabelo, R.L., 2017. Investigating the effects of class imbalance in learning the claim authorization process in the Brazilian health care market, in: 2017 International Joint Conference on Neural Networks (IJCNN). Presented at the 2017 International Joint Conference on Neural Networks (IJCNN), pp. 3265–3272. https://doi.org/10.1109/IJCNN.2017.7966265
Cortes, C., Vapnik, V., 1995. Support-vector networks. Mach. Learn. 20, 273–297. https://doi.org/10.1007/BF00994018
Dionne, G. eds, 2013. Handbook of Insurance.
Dutta, K., Chandra, S., Gourisaria, M.K., GM, H., 2021. A Data Mining based Target Regression-Oriented Approach to Modelling of Health Insurance Claims, in: 2021 5th International Conference on Computing Methodologies and Communication (ICCMC). Presented at the 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), pp. 1168–1175. https://doi.org/10.1109/ICCMC51019.2021.9418038
Dwivedi, R.M.S.K., Mishra, A., Gupta, R., 2020. Risk Prediction Assessment In Life Insurance Company Through Dimensionality. Int. J. Sci. Technol. Res. 9, 1528–1532.
Friedman, J., 2001. Greedy function approximation: A gradient boosting machine. undefined.
Friedman, J., Hastie, T., Tibshirani, R., 2000. Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors). Ann. Stat. 28, 337–407. https://doi.org/10.1214/aos/1016218223
Govindarajula, S.G.K., 2019. Classifying risk in life insurance using predictive analytics.
Hanafy, M., Ming, R., 2021. USING MACHINE LEARNING MODELS TO COMPARE VARIOUS RESAMPLING METHODS IN PREDICTING INSURANCE FRAUD. . Vol. 16.
Hassan, A.K.I., Abraham, A., 2016. Modeling Insurance Fraud Detection Using Imbalanced Data Classification, in: Pillay, N., Engelbrecht, A.P., Abraham, A., du Plessis, M.C., Snášel, V., Muda, A.K. (Eds.), Advances in Nature and Biologically Inspired Computing, 進展(AISC,第 419 卷)的一部分. Springer International Publishing, Cham, pp. 117–127. https://doi.org/10.1007/978-3-319-27400-3_11
Haykin, S., 2009. Neural Networks and Learning Machines, 3rd Edition | Pearson [WWW Document]. URL https://www.pearson.com/us/higher-education/program/Haykin-Neural-Networks-and-Learning-Machines-3rd-Edition/PGM320370.html (accessed 5.24.22).
He, C.L., Keirstead, D., Suen, C.Y., 2020. A Hybrid Multiple Classifier System Applied in Life Insurance Underwriting, in: Pattern Recognition and Artificial Intelligence. Presented at the International Conference on Pattern Recognition and Artificial Intelligence, Springer, Cham, pp. 171–176. https://doi.org/10.1007/978-3-030-59830-3_15
Hedengren, D., Stratmann, T., 2016. Is There Adverse Selection in Life Insurance Markets? Econ. Inq. 54, 450–463. https://doi.org/10.1111/ecin.12212
Islam, M.R., Liu, S., Biddle, R., Razzak, I., Wang, X., Tilocca, P., Xu, G., 2021. Discovering dynamic adverse behavior of policyholders in the life insurance industry. Technol. Forecast. Soc. Change 163. https://doi.org/10.1016/j.techfore.2020.120486
Jain, R., Alzubi, J.A., Jain, N., Joshi, P., 2019. Assessing risk in life insurance using ensemble learning. J. Intell. Fuzzy Syst. 37, 2969–2980.
Joudaki, H., Rashidian, A., Minaei-Bidgoli, B., Mahmoodi, M., Geraili, B., Nasiri, M., Arab, M., 2016. Improving Fraud and Abuse Detection in General Physician Claims: A Data Mining Study. Int. J. Health Policy Manag. 5, 165. https://doi.org/10.15171/ijhpm.2015.196
Katiechi, S.O., 2021. A Federated Learning Model for the Detection of Insurance Claims Fraud (Thesis). University of Nairobi.
Liu, Q., 2019. Research on Risk Management of Big Data and Machine Learning Insurance Based on Internet Finance. J. Phys. Conf. Ser. 1345, 052076. https://doi.org/10.1088/1742-6596/1345/5/052076
Makau, L., Okeyo, W., 2021. Risk Underwriting, Crisis Management, Regulatory Framework and Performance of Insurance Companies in Kenya: A Case of Sanlam General Insurance Company. J. Hum. Resour. Leadersh. 5, 96–113. https://doi.org/10.53819/10.53819/81018102t3026
Mustika, W.F., Murfi, H., Widyaningsih, Y., 2019. Analysis Accuracy of XGBoost Model for Multiclass Classification - A Case Study of Applicant Level Risk Prediction for Life Insurance, in: 2019 5th International Conference on Science in Information Technology (ICSITech). Presented at the 2019 5th International Conference on Science in Information Technology (ICSITech), pp. 71–77. https://doi.org/10.1109/ICSITech46713.2019.8987474
Pai, D.D., Agnihotri, P., Jha, B.K., 2016. Applications of Data Mining in Detecting Fraudulent Health Insurance Claim. Int. J. Eng. Res. 4, 4.
Paruchuri, H., 2020. The Impact of Machine Learning on the Future of Insurance Industry. Am. J. Trade Policy 7, 85–90. https://doi.org/10.18034/ajtp.v7i3.537
Patil, T.R., Sherekar, S., 2013. Performance Analysis of Naive Bayes and J 48 Classification Algorithm for Data Classification. undefined.
Powell, D., Goldman, D., 2021. Disentangling moral hazard and adverse selection in private health insurance. Ann. Issue Struct. Econom. Honor. Daniel McFadden 222, 141–160. https://doi.org/10.1016/j.jeconom.2020.07.030
Reliable Accuracy Estimates from k-Fold Cross Validation [WWW Document], n.d. URL https://ieeexplore.ieee.org/abstract/document/8698831/?casa_token=4cKdTZlFReAAAAAA:7_BvuMpPPbJyGf6-H3PR_ijSFkNblgSXy9pTrWxG-l2saB804xg3ZfDgbe8VrnAHW_De2j6_ (accessed 5.22.22).
Rothschild, M., Stiglitz, J., 1976. Equilibrium in Competitive Insurance Markets: An Essay on the Economics of Imperfect Information*. Q. J. Econ. 90, 629–649. https://doi.org/10.2307/1885326
Saripalli, P., Tirumala, V., Chimmad, A., 2017. Assessment of healthcare claims rejection risk using machine learning, in: 2017 IEEE 19th International Conference on E-Health Networking, Applications and Services (Healthcom). Presented at the 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom), pp. 1–6. https://doi.org/10.1109/HealthCom.2017.8210758
Seema Rawat, Aakankshu Rawat, Deepak Kumar, A. Sai Sabitha, 2021. Application of machine learning and data visualization techniques for decision support in the insurance sector. Int. J. Inf. Manag. Data Insights 1, 100012. https://doi.org/10.1016/j.jjimei.2021.100012
Sengupta, R., Rooj, D., 2019. The effect of health insurance on hospitalization: Identification of adverse selection, moral hazard and the vulnerable population in the Indian healthcare market. World Dev. 122, 110–129. https://doi.org/10.1016/j.worlddev.2019.05.012
Singh A., Ramkumar K.R., 2021. Risk assessment for health insurance using equation modeling and machine learning. Int. J. Knowl.-Based Intell. Eng. Syst. 25, 201–225. https://doi.org/10.3233/KES-210065
T. Wong, P. Yeh, 2020. Reliable Accuracy Estimates from k-Fold Cross Validation. IEEE Trans. Knowl. Data Eng. 32, 1586–1594. https://doi.org/10.1109/TKDE.2019.2912815
Thota, S., Sai, K.V., Swarnalatha, P., 2021. Machine Learning Implementation for Health insurance. Int. J. Adv. Trends Comput. Sci. Eng. 10, 2006–2011. https://doi.org/10.30534/ijatcse/2021/721032021
Vaughan, E.J., Vaughan, T., 2008. Fundamentals of Risk and Insurance, Tenth Edition Book [WWW Document]. Skillsoft. URL https://www.skillsoft.com/book/fundamentals-of-risk-and-insurance-tenth-edition-b0dfbf80-efed-11e6-8ce3-0242c0a80c07 (accessed 6.4.22).
Wang, P., 2021. Predictive Machine Learning for Underwriting Life and Health Insurance | Institute and Faculty of Actuaries [WWW Document]. URL https://www.actuaries.org.uk/learn-develop/attend-event/predictive-machine-learning-underwriting-life-and-health-insurance (accessed 6.4.22).
Yang, B., 2021. Machine Learning in Insurance Underwriting Context, in: 2021 International Conference on Electronic Information Technology and Smart Agriculture (ICEITSA). Presented at the 2021 International Conference on Electronic Information Technology and Smart Agriculture (ICEITSA), pp. 478–484. https://doi.org/10.1109/ICEITSA54226.2021.00097
中文文獻
余建岳, 2017. 壽險業利用大數據建構醫療保險詐欺風控決策之研究. 風險管理與保險學系碩士在職專班. 銘傳大學, 台北市.
張簡淑美, 2019. 基於機器學習建立健康保險理賠風險評估模型. 資訊管理學研究所. 國立臺灣大學, 台北市.
洪緯倫, 2016. 終身醫療保險短期出險因素之探討. 金融系金融資訊碩士在職專班. 國立高雄應用科技大學, 高雄市.
范振庭, 2016. 個人醫療險道德危險及理賠因素之研究—以S壽險公司為例. 風險管理與保險學系碩士在職專班. 銘傳大學, 台北市.
蔡政翰, 2016. 商業醫療保險短期出險因素之探討分析-以C壽險公司為例. 財富與稅務管理系碩士在職專班. 國立高雄應用科技大學, 高雄市.
鄭鎮樑, 2021. 保險學原理─精華版. 五南圖書出版股份有限公司. |