博碩士論文 109521040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:100 、訪客IP:18.188.229.120
姓名 吳淇賢(Qi-Xian Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 自差分電路操作砷化銦鎵/砷化銦鋁單光子崩潰 二極體的分析與應用
(Analysis and Applications of Self-differencing InGaAs/InAlAs Single Photon Avalanche Diode)
相關論文
★ 應用自差分電路對具有不同擊穿電壓之多層累增層的砷化銦鎵/砷化銦鋁之單光子雪崩二極體性能影響★ 砷化銦鎵/砷化鋁銦單光子崩潰二極體陣列 之光學串擾模擬
★ 改變電荷層摻雜濃度之砷化銦鎵/砷化銦鋁單光子累增二極體的特性探討★ 具有分佈式布拉格反射結構的砷化銦鎵/砷化銦鋁單光子崩潰二極體的特性分析
★ 在砷化銦鎵 /砷化鋁銦單光子崩潰二極體中崩潰閃光引致光學串擾之探討★ 改善載子傳輸之砷化銦鎵/砷化銦鋁平台式單光子崩潰二極體的設計與其特性
★ 砷化銦鎵/磷化銦單光子雪崩型偵測器暗計數特性分析★ 砷化銦鎵/砷化銦鋁單光子崩潰二極體 元件製作及適當電荷層濃度模擬分析
★ 應用於單光子雪崩二極體之氮化鉭薄膜電阻器的特性探討★ 砷化銦鎵/砷化銦鋁單光子崩潰二極體的設計與特性探討
★ 砷化銦鎵/磷化銦單光子崩潰二極體暗與光特性分析★ 砷化銦鎵/磷化銦單光子崩潰二極體正弦波 閘控模式之暗與光特性分析
★ 砷化銦鎵/砷化銦鋁平台式雙累增層單光子崩潰二極體的設計與其特性★ 考慮後段製程連線及佈局優化之積層型三維靜態隨機存取記憶體
★ 鐵電場效電晶體記憶體考慮金屬功函數變異度之分析★ 蝕刻深度對平台式雙累增層砷化銦鎵/砷化銦鋁單光子崩潰二極體之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,單光子崩潰二極體發展迅速,因為它有寬廣應用範圍的潛力,應用上有車用電子、消費性電子、醫療電子、量子密鑰分發等等,但無論應用在哪個領域都需要更靈敏且低噪聲之光子訊號偵測能力,更期望能達到光子數解析(photon number resolving, PNR)的能力來促進其在量子資訊領域之發展。以量子密鑰分發的應用而言,需要高速且時間特性佳的單光子偵測器以提高密鑰率及增加傳輸距離。使用具備光子數解析能力之單光子偵測器更可以使量子密鑰分發系統免受光子數目分離之攻擊,提升通訊的安全性。
在傳統閘壓模式電路(gated mode)操作下,交流訊號會透過二極體接面電容耦合輸出一暫態訊號,此訊號將伴隨雪崩訊號輸出,在高頻、短脈衝操作下,雪崩載子數量少使得崩潰訊號變小,真正的崩潰訊號與暫態訊號將難以分辨,無法輸出正確的計數。因此,本論文利用自差分電路(self-differencing circuit)將原本之輸出訊號進行訊號處理以消除電容耦合暫態訊號,進一步利於分辨微弱之崩潰訊號,從而改善暗計數率、提高光子偵測效率、降低後脈衝之影響以及改善時間特性表現。
我們所自製的單光子崩潰二極體搭配 9.9 MHz的閘壓電路操作,透過自差分電路可將電壓雜訊抑制了 25 dB,與過去相比,元件整體的暗計數下降將近兩個數量級,同時在 225 K下,單光子偵測效率提高到 74.3 %,逼近元件的外部量子效率。在有效偵測時間半高寬大約為 1.5 ns的條件下,我們成功演示了自製的單光子崩潰二極體元件具有四個光子數目解析的能力,此論文是第一個能在砷化銦鎵/砷化銦鋁光子崩潰二極體材料系統演示光子數目解析之研究。
摘要(英) In recent years, the development of single-photon avalanche diodes (SPADs) grows rapidly because of their potential role in wide applications such as automotive electronics, consumer electronics, medical electronics, quantum key distribution, etc. In all above applications, a highly sensitive and low noise photon detector is always demanded. Special effort is paid to achieve the ability of photon number resolving for facilitating the development of quantum information science. Taking quantum key distribution for example, it requires a single photon detector of the advantages of high speed and high time precision to increase the secure key rate and the transmission distance. A single photon detector capable of resolving photon number can help to prevent the photon number splitting (PNS) attack, ensuring a security communication.
If operating SPAD at conventional gated mode, the alternating current will be coupled to the output through the junction capacitance, resulting an avalanche signal accompanying with the transient signal. Under the operation of high frequency and short pulse width, the reducing amount of avalanche carriers will decrease the avalanche signal, which makes the discrimination of avalanche signal more difficult and is unable to perform reliable counting. Therefore, this thesis employs the self-differencing circuit to eliminate the capacitive signal for suppressing the background noise and better discriminating the avalanche signal such that the dark count rate (DCR), single photon detection efficiency (SPDE), afterpulsing effect and timing characteristics can be improved.
For our home-made SPAD operated at gated mode with the gating frequency of 9.9 MHz, we obtain a suppression ratio of 25 dB by introducing the self-differencing technique. With the improvement in the signal to noise ratio, we have shown that the DCR can be improved by 2 orders. At 225 K, the SPDE is elevated to 74.3 %, approaching the external quantum efficiency. Under the effective gate width of 1.5 ns, we successfully demonstrate the resolution of four photon number states with our home-made SPAD, which is the first demonstration of PNR detector for InGaAs/InAlAs SPADs.
關鍵字(中) ★ 單光子崩潰二極體
★ 暗計數
★ 時基誤差
★ 單光子偵測效率
★ 後脈衝效應
★ 自差分電路
★ 光子數解析
關鍵字(英) ★ SPAD
★ Dark count rate
★ Jitter
★ SPDE
★ Afterpulsing
★ SD-circuit
★ PNR
論文目次 中文摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 x
表目錄 xiv
一、前言 1
1-1 單光子偵測元件 1
1-1-1 電荷耦合元件 2
1-1-2 光電倍增管 3
1-2 光子數解析偵測器文獻回顧 4
1-3 研究動機 9
1-3-1 自差分電路 9
1-3-2 光子數目解析 10
二、SPAD元件介紹 11
2-1 單光子崩潰二極體 11
2-1-1 元件I-V特性操作原理 11
2-1-2 二極體崩潰機制 12
2-1-3 元件磊晶結構 15
2-2 元件操作電路原理 18
2-2-1 自由運作模式電路(free running mode circuit) 18
2-2-2 閘控模式電路(gated passive quenching circuit) 19
2-3 元件特性參數 22
2-3-1 暗計數(dark count rate) 22
2-3-2 時基誤差(timing jitter) 26
2-3-3 響應率(responsivity) 27
2-3-4 單光子偵測效率(single photon detection efficiency) 29
三、量測系統架構 32
3-1 元件特性量測 32
3-1-1 打線前後I-V特性(黑箱量測)32
3-1-2 光暗電流量測 35
3-2 自差分電路設計 37
3-2-1 差分放大器 37
3-2-2 電路設計動機 40
3-2-3 電路功能設計 42
3-3 元件特性量測架構 46
3-3-1 光路架構 46
3-3-2 自差分電路脈衝閘控模式 48
3-3-3 量測 jitter 及 afterpulsing 架構 49
四、量測結果與討論 54
4-1 變溫電壓-電流量測 54
4-2 有效脈衝寬度 56
4-3 變溫暗計數量測 57
4-4 變溫 SPDE 量測 59
4-5 變溫 AFTERPULSING 量測 62
4-6 變溫 JITTER 量測 64
4-7 光子數解析(PNR) 66
五、結論及未來展望 72
參考文獻 74
附錄 A 81
附錄 B 84
參考文獻 [1] Wikipedia, charge-coupled device. Available:
https://zh.wikipedia.org/wiki/%E6%84%9F%E5%85%89%E8%80%A6%E5%90%88%E5%85%83%E4%BB%B6
[2] Easyatm, Photomultiplier. Available:
https://www.easyatm.com.tw/wiki/%E5%85%89%E9%9B%BB%E5%80%8D%E5%A2%9E%E7%AE%A1
[3] J. C. Campbell, W. Sun, Z. Lu, M. A. Itzler and X. Jiang, "Common-Mode Cancellation in Sinusoidal Gating With Balanced InGaAs/InP Single Photon Avalanche Diodes," in IEEE Journal of Quantum Electronics, vol. 48, no. 12, pp. 1505-1511, 2012.
[4] E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,”Nature 409, 46-52, 2001.
[5] P. Kok, W. Munro, K. Nemoto, T. Ralph, J. Dowling, and G. Milburn, “Linear optical quantum computing with photonic qubits”, Rev. Mod. Phys. 79, 135-174, 2007.
[6] S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, “Development of a high-quantum-efficiency single-photon counting system,” Appl. Phys. Lett. 74, 1063-1065, 1999.
[7] D. Zhu, M. Colangelo, C. Chen, B. A. Korzh, F. N. C. Wong, M. D. Shaw, and K. K. Berggren, “Resolving photon numbers using a superconducting nanowire with impedance-matching taper,” Nano Lett. 20, 3858–3863, 2020.

[8] Kardynał, B., Yuan, Z. & Shields, "A. An avalanche‐photodiode-based photon-number-resolving detector. " Nature Photon, vol. 2, no. 7, pp. 425–428, 2008.
[9] Gur Lubin, Ron Tenne, Ivan Michel Antolovic, Edoardo Charbon, Claudio Bruschini, and Dan Oron, "Quantum correlation measurement with single photon avalanche diode arrays," Opt. Express 27, 32863-32882, 2019.
[10] Chen, X., Ding, C., Pan, H. et al. Temporal and spatial multiplexed infrared single-photon counter based on high-speed avalanche photodiode. Sci Rep 7, 44600, 2017.
[11] Ruitong Zheng and Guanhao Wu, "Constant fraction discriminator in pulsed time-of-flight laser rangefinding. " Front. Optoelectron., vol. 5, no. 2, pp. 182-186, 2012.
[12] Lacaita A, Zappa F, Cova S, Lovati P, "Single-photon detection beyond 1 µm: performance of commercially available InGaAs/lnP detectors, " Appl Opt., vol. 35, no. 16, 1996.
[13] S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, "Avalanche photodiodes and quenching circuits for single-photon detection," Appl. Opt. vol. 35, pp. 1956-1976, 1996.
[14] L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, "Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm", Journal of Applied Physics, vol. 117, pp. 083109, 2015.
[15] Hall, David, Liu, Yu-Hsin and Lo, Yu-Hwa. "Single photon avalanche detectors: prospects of new quenching and gain mechanisms" Nanophotonics, vol. 4, no. 4, pp. 397-412, 2015.
[16] M. A. Itzler, r. Ben-Michael, C. -F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa & R. Ispasoiu, "Single photon avalanche diodes (SPADs) for 1.5 μm photon counting applications", Journal of Modern Optics, vol. 54 no. 2-3, pp. 283-304, 2007.
[17] G. Karve et al., "Geiger mode operation of an In/sub 0.53/Ga/sub 0.47/As-In/sub 0.52/Al/sub 0.48/As avalanche photodiode," in IEEE Journal of Quantum Electronics, vol. 39, no. 10, pp. 1281-1286, 2003.
[18] A. Koehler-Sidki, J. F. Dynes, M. Lucamarini, G. L. Roberts, A. W. Sharpe, Z. L. Yuan, and A. J. Shields1, "Best-Practice Criteria for Practical Security of Self-Differencing Avalanche Photodiode Detectors in Quantum Key Distribution" Phys. Rev. Applied, vol. 9, no. 4, pp. 044027, 2018.
[19] F. Mattioli, Z. Zhou, A. Gaggero R.Gaudio, S. Jahanmirinejad, D.Sahin, F. Marsili, R. Leoni and S. Jahanmirinejad, "Photon-number-resolving superconducting nanowire detectors" Supercond Sci Technol, vol. 28, no. 10, pp. 104001, 2015.
[20] Leaf A. Jiang, Eric A. Dauler, and Joshua T. Chang, " Photon-number-resolving detector with 10 bits resolution." Phys. Rev. A, vol. 75, no. 6, pp. 062325, 2007.
[21] Xiao Meng, Shiyu Xie, Xinxin Zhou, Niccolò Calandri, Mirko Sanzaro, Alberto Tosi, Chee Hing Tan1 and Jo Shien Ng, "InGaAs/InAlAs single photon avalanche diode for 1550 nm photons" Engineering, vol. 3, no. 3, pp. 150584, 2016.
[22] A. Mofasser, S. Saha, K. S. Hadi, F. M. Mohammedy and Y. El-Batawy, "Modeling of photocurrent and dark count probability of InGaAs/ InP Single Photon Avalanche Photodiode," 2017 IEEE International Conference on Telecommunications and Photonics (ICTP), pp. 147-151, 2017.
[23] Seok-Beom Cho and Sae-Kyoung Kang, "Weak avalanche discrimination for gated-mode single-photon avalanche photodiodes," Opt. Express 19, pp. 18510-18515, 2011.
[24] M. Assanelli, A. Ingargiola, I. Rech, A. Gulinatti and M. Ghioni, "Photon-Timing Jitter Dependence on Injection Position in Single-Photon Avalanche Diodes," in IEEE Journal of Quantum Electronics, vol. 47, no. 2, pp. 151-159, 2010.
[25] Yan Liang, Qilai Fei, Zhihe Liu, Kun Huang, and Heping Zeng, "Low-noise InGaAs/InP single-photon detector with widely tunable repetition rates," Photon. Res. 7, A1-A6, 2019.
[26] Alessandro Restelli, Joshua C. Bienfang, "Avalanche discrimination and high-speed counting in periodically gated single-photon avalanche diodes," Advanced Photon Counting Techniques VI, vol. 8375, pp. 83750Z, 2012.
[27] Liu, J.; Xu, Y.; Wang, Z.; Li, Y.; Gu, Y.; Liu, Z.; Zhao, X. "Reducing Afterpulsing in InGaAs(P) Single-Photon Detectors with Hybrid Quenching. " Sensors 2020, 20, 4384, 2022.
[28] Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, "High speed single photon detection in the near infrared", Appl. Phys. Lett. 91, 041114, 2007.
[29] Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, "Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes", Appl. Phys. Lett. 96, 071101, 2010.
[30] Guang Wu, Yi Jian, E Wu, and Heping Zeng, "Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode," Opt. Express, vol. 17, pp. 18782-18787, 2009.
[31] Jinhou Lin, Ying Sun, Wen Wu, Kun Huang, Yan Liang, Ming Yan, and Heping Zeng, "High-speed photon-number-resolving detection via a GHz-gated SiPM," Opt. Express, vol. 30, pp. 7501-7510, 2022.
[32] Xiao Meng, Chee Hing Tan, Simon Dimler, John P R David, and Jo Shien Ng, "1550 nm InGaAs/InAlAs single photon avalanche diode at room temperature," Opt. Express, vol. 22, pp. 22608-22615, 2014.
[33] J. Zhang, H. Wang, G. Zhang, K. H. Tan, S. Wicaksono, H. Xu, C. Wang, Y. Chen, Y. Liang, C. C. W. Lim, S. F. Yoon, and X. Gong, "High-performance InGaAs/InAlAs single-photon avalanche diode with a triple-mesa structure for near-infrared photon detection," Opt. Lett, Vol. 46, pp. 2670-2673, 2021.
[34] Y. S. Lee, Naseem, P. L. Wu, Y. J. Chen and J. W. Shi, "Neat Temporal Performance of InGaAs/InAlAs single photon avalanche diode withstepwise electric field in multiplication layers," IEEE Access, vol. 9 ,pp. 32979-32985, 2021.
[35] Y. -S. Lee et al., "In0.52Al0.48As Based Single Photon Avalanche Diodes With Stepped E-Field in Multiplication Layers and High Efficiency Beyond 60%," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 2, pp. 1-7, 2022.
[36] A. Tada, N. Namekata and S. Inoue, "Saturated detection efficiency of single-photon detector based on an InGaAs/InP single-photon avalanche diode gated with a large-amplitude sinusoidal voltage. " Jpn. J. Appl. Phys., vol. 59, no. 7, pp. 072004, 2020.
[37] Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, "Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes", Appl. Phys. Lett. 96, 071101, 2010.
[38] Guang Wu, Yi Jian, E Wu, and Heping Zeng, "Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode," Opt. Express, vol. 17, pp. 18782-18787, 2009.
[39] Jinhou Lin, Ying Sun, Wen Wu, Kun Huang, Yan Liang, Ming Yan, and Heping Zeng, "High-speed photon-number-resolving detection via a GHz-gated SiPM," Opt. Express, vol. 30, pp. 7501-7510, 2022.
[40] Xiao Meng, Chee Hing Tan, Simon Dimler, John P R David, and Jo Shien Ng, "1550 nm InGaAs/InAlAs single photon avalanche diode at room temperature," Opt. Express, vol. 22, pp. 22608-22615, 2014.
[41] J. Zhang, H. Wang, G. Zhang, K. H. Tan, S. Wicaksono, H. Xu, C. Wang, Y. Chen, Y. Liang, C. C. W. Lim, S. F. Yoon, and X. Gong, "High-performance InGaAs/InAlAs single-photon avalanche diode with a triple-mesa structure for near-infrared photon detection," Opt. Lett, Vol. 46, pp. 2670-2673, 2021.
[42] Y. S. Lee, Naseem, P. L. Wu, Y. J. Chen and J. W. Shi, "Neat Temporal Performance of InGaAs/InAlAs single photon avalanche diode withstepwise electric field in multiplication layers," IEEE Access, vol. 9, pp. 32979-32985, 2021.
[43] Y. -S. Lee et al., "In0.52Al0.48As Based Single Photon Avalanche Diodes With Stepped E-Field in Multiplication Layers and High Efficiency Beyond 60%," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 2, pp. 1-7, 2022.

[44] A. Tada, N. Namekata and S. Inoue, "Saturated detection efficiency of single-photon detector based on an InGaAs/InP single-photon avalanche diode gated with a large-amplitude sinusoidal voltage. " Jpn. J. Appl. Phys., vol. 59, no. 7, pp. 072004, 2020.
[45] X. L. Chen, E. Wu, L. L. Xu, Y. Liang, G. Wu, and H. Zeng, "Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates." Appl. Phys. Lett. 95, 131118, 2009.
指導教授 李依珊(Yi-Shan Lee) 審核日期 2022-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明