博碩士論文 109522113 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.149.28.134
姓名 邵惟民(Wei-Min Shao)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於省電的低軌衛星網路路由演算法
(An Energy-Efficient Routing Algorithm for LEO Satellite Networks)
相關論文
★ 基於OP-TEE的可信應用程式軟體生態系統★ 在低軌道衛星無線通訊中的CSI預測方法
★ 為多流量低軌道衛星系統提出的動態換手策略★ 基於Trustzone的智慧型設備語音隱私保護系統
★ 一種減輕LEO衛星網路干擾的方案★ TruzGPS:基於TrustZone的位置隱私權保護系統
★ 衛星地面整合網路之隨機接入前導訊號設計與偵測★ SatPolicy: 基於Trustzone的衛星政策執行系統
★ TruzMalloc: 基於TrustZone 的隱私資料保 護系統★ 衛星地面網路中基於物理層安全的CSI保護方法
★ 低軌道衛星地面整合網路之安全非正交多重存取傳輸★ 低軌道衛星地面網路中的DRX機制設計
★ 衛星地面整合網路之基於集合系統的前導訊號設計★ 衛星上可重組化計算之安全FPGA動態部分可重組架構
★ 衛星網路之基於空間多樣性的前導訊號設計★ TrustCS: 基於 Trusted Firmware-M 的安全 CubeSat 韌體更新機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 衛星通訊可以無視地理限制並為地球上的任何地方提供服務的特
性使得它變得越來越受歡迎。衛星軌道的周期可以分為日光期和日蝕
期。日蝕期間,衛星無法被太陽照射,其電池是唯一的電力來源。若
是無節制地使用能源將導致衛星電池快速老化,因為電池的充放電的
次數是有限的。開發能夠延長衛星電池壽命的路由也因此變得非常重
要。現今雖有許多研究在探討衛星路由,但他們有些需要足夠的地面
站來計算和傳輸路由表(即集中式路由方案),而有些則只專注於尋找
最短路徑。地球與LEO 衛星的相對位置具有規律性,利用這一特性,
我們提出了一個動態、且無需地面站的路由演算法。結果表明,我們
可以防止過高的電池放電深度而且,相較於其他的我們比較的方法。
我們能達到更加均衡的負載平衡且只增加了微量的路徑長度。
摘要(英) Satellite communication could ignore geographic restrictions and provide
services to everywhere on earth which makes it become more and more popular
overtime. The period of a satellite orbit can be divided into sunlight period
and eclipse period. In eclipse period, satellite could not be irradiated by the
sun and its battery is the only power supply. Unrestrained use of energy will
cause a satellite to age quickly since the number of charge/discharge of battery
cells are limited. The development of energy-efficient satellite routing to
save energy and prolong satellite lifetimes has become significantly important.
Many of the existing approache either need sufficient ground stations
to compute and transmit the routing table (i.e. centralized routing scheme)
frequently or focus on finding a shortest path. The relative location of earth
and a LEO satellite has a regularity, by taking advantage of this feature, we
proposed a dynamic routing scheme with no need for the ground station to
calculate the routes. The result showed that we could prevent batteries from
a high depth of discharge campared with the shortest path algorithm. Moreover,
with a guarantee of load balancing and a little increment of path length.
關鍵字(中) ★ 衛星
★ 路由
★ 低軌衛星
★ 軌道
★ 電池
關鍵字(英) ★ Satellites
★ Routing
★ Low earth orbit satellites
★ Orbits
★ Batteries
論文目次 中文摘要i
Abstract ii
致謝iii
Contents iv
List of Figures vi
List of Tables viii
0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.2 related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.2.1 Distributed Routing in Satellite Networks . . . . . . . . . . . . . 4
0.2.2 Energy-efficient routing in Satellite Networks . . . . . . . . . . . 5
0.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
0.3.1 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . 6
0.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
0.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
0.4.2 Routing Zone Decision . . . . . . . . . . . . . . . . . . . . . . . 11
0.4.3 Routing Path decision . . . . . . . . . . . . . . . . . . . . . . . 13
0.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
0.5.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . 20
0.5.2 Ramain Battery Power . . . . . . . . . . . . . . . . . . . . . . . 22
0.5.3 Path Length and Delay . . . . . . . . . . . . . . . . . . . . . . . 22
0.5.4 Link Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
0.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Bibliography 28
參考文獻 [1] O. A. A. Al-Selwi and P. A. Babiker, “Comparison of microwave and optical wireless
inter-satellite links,” 2020.
[2] D. Bhattacherjee and A. Singla, “Network topology design at 27,000 km/hour,”
in Proceedings of the 15th International Conference on Emerging Networking
Experiments And Technologies, ser. CoNEXT ’19. New York, NY, USA:
Association for Computing Machinery, 2019, pp. 341–354. [Online]. Available:
https://doi.org/10.1145/3359989.3365407
[3] H. Kaushal, V. K. Jain, and S. Kar, Acquisition, Tracking, and Pointing.
New Delhi: Springer India, 2017, pp. 119–137. [Online]. Available: https:
//doi.org/10.1007/978-81-322-3691-7_4
[4] https://www.leosat.com/.
[5] https://oneweb.net/.
[6] G. Song, M. Chao, B. Yang, and Y. Zheng, “Tlr: A traffic-light-based intelligent
routing strategy for ngeo satellite ip networks,” IEEE Transactions on Wireless Communications,
vol. 13, no. 6, pp. 3380–3393, 2014.
[7] B. Soret and D. Smith, “Autonomous routing for leo satellite constellations with minimum
use of inter-plane links,” IEEE International Conference on Communications
(ICC), pp. 1–6, 2019.
[8] T. Pan, T. Huang, X. Li, Y. Chen, W. Xue, and Y. Liu, “OPSPF: Orbit prediction
shortest path first routing for resilient leo satellite networks,” IEEE International
Conference on Communications (ICC), pp. 1–6, 2019.
[9] H. S. Chang, B. W. Kim, C. G. Lee, S. L. Min, Y. Choi, H. S. Yang, D. N. Kim,
and C. S. Kim, “Fsa-based link assignment and routing in low-earth orbit satellite
networks,” IEEE Transactions on Vehicular Technology, vol. 47, no. 3, pp. 1037–
1048, 1998.
[10] L. Hao, P. Ren, and Q. Du, “Satellite QoS routing algorithm based on energy aware
and load balancing,” International Conference on Wireless Communications and Signal
Processing (WCSP), pp. 685–690, 2020.
[11] M. Hussein, A. Abu-Issa, and I. Elayyan, “Location-aware load balancing routing
protocol for LEO satellite networks,” International Conference on Advanced Communication
Technologies and Networking (CommNet), pp. 1–7, 2018.
[12] D. Zhou, M. Sheng, K.-S. Lui, X. Wang, R. Liu, C. Xu, and Y. Wang, “Lifetime maximization
routing with guaranteed congestion level for energy-constrained leo satellite
networks,” in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring),
2016, pp. 1–5.
[13] Y. Yang, M. Xu, D. Wang, and Y. Wang, “Towards energy-efficient routing in satellite
networks,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 12, pp.
3869–3886, 2016.
[14] M. Marchese and F. Patrone, “E-cgr: Energy-aware contact graph routing over
nanosatellite networks,” IEEE Transactions on Green Communications and Networking,
vol. 4, no. 3, pp. 890–902, 2020.
[15] A. Pocora, S. Lupu, and E. Lupu, “Modelling the eclipse region for gps satellites,”
Mircea cel Batran Naval Academy Scientific Bulletin, 2012.
[16] H. Song, S. Liu, X. Hu, X. Li, and W. Wang, “Load balancing and QoS supporting
access and handover decision algorithm for GEO/LEO heterogeneous satellite net-
works,” IEEE International Conference on Computer and Communications (ICCC),
pp. 640–645, 2018.
[17] https://stats.ams-ix.net/index.html.
指導教授 張貴雲(Guey-Yun Chang) 審核日期 2022-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明