參考文獻 |
梁琨、任依梦、尚余虎、张翼英、王聪(2021)。深度学习驱动的知识追踪研究进展综述。计算机工程与应用,57(21),41-58。 https://doi.org/10.3778/j.issn.1002-8331.2106-0552
劉恆宇、張天成、武培文、于戈(2019)。知識追蹤綜述。華東師範大學學報 (自然科學板),2019(5),1-15。https://doi.org/10.3969/j.issn.1000-5641.2019.05.001
劉嫈楓. (2022, January 1). 有數位工具≠數位轉型-均一呂冠緯,從「心」教育. Ubrand.Udn.Com. https://ubrand.udn.com/ubrand/story/11817/5996382
謝佩珊、石美倫(2020)。國內大學學習預警資訊系統研究: 發展現況與侷限。教育科學研究期刊,65(4),171-201。https://doi.org/10.6209/JORIES.202012_65(4).0006
Adekitan, A. I., & Salau, O. (2019). The impact of engineering students′ performance in the first three years on their graduation result using educational data mining. Heliyon, 5(2), e01250. https://doi.org/https://doi.org/10.1016/j.heliyon.2019.e01250
Adler, R. F., & Kim, H. (2018). Enhancing future K-8 teachers’ computational thinking skills through modeling and simulations. Education and Information Technologies, 23(4), 1501-1514. https://doi.org/10.1007/s10639-017-9675-1
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49. https://doi.org/10.1016/j.tele.2019.01.007
Alhazbi, S. (2016). Active Blended Learning to Improve Students’ Motivation in Computer Programming Courses: A Case Study. In M. Abdulwahed, M. O. Hasna, & J. E. Froyd (Eds.), Advances in Engineering Education in the Middle East and North Africa: Current Status, and Future Insights (pp. 187-204). Springer International Publishing. https://doi.org/10.1007/978-3-319-15323-0_8
ArchMiller, A., Fieberg, J., Walker, J. D., & Holm, N. (2017). Group peer assessment for summative evaluation in a graduate-level statistics course for ecologists. Assessment & Evaluation in Higher Education, 42(8), 1208-1220. https://doi.org/10.1080/02602938.2016.1243219
Arnold, K. E., & Pistilli, M. D. (2012). Course signals at Purdue: using learning analytics to increase student success Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, Vancouver, British Columbia, Canada. https://doi.org/10.1145/2330601.2330666
Aznar-Diaz, I., Hinojo-Lucena, F. J., Caceres-Reche, M. P., & Romero-Rodriguez, J. M. (2020). Analysis of the determining factors of good teaching practices of mobile learning at the Spanish University. An explanatory model [Article]. Computers & Education, 159, 12, Article 104007. https://doi.org/10.1016/j.compedu.2020.104007
Bentham, C. (2017). Faculty perspectives and participation in implementing an early alert system and intervention in a community college. https://purl.fcla.edu/fcla/etd/CFE0006857
Berland, M., & Wilensky, U. (2015). Comparing Virtual and Physical Robotics Environments for Supporting Complex Systems and Computational Thinking. Journal of Science Education and Technology, 24(5), 628-647. https://doi.org/10.1007/s10956-015-9552-x
Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145-157. https://doi.org/10.1016/j.compedu.2013.10.020
Blikstein, P. (2011). Using learning analytics to assess students′ behavior in open-ended programming tasks Proceedings of the 1st International Conference on Learning Analytics and Knowledge, Banff, Alberta, Canada. https://doi.org/10.1145/2090116.2090132
Brophy, J. (2004). Motivating students to learn. Routledge. https://doi.org/10.4324/9781410610218
Carter, A. S., Hundhausen, C. D., & Adesope, O. (2015). The Normalized Programming State Model: Predicting Student Performance in Computing Courses Based on Programming Behavior Proceedings of the eleventh annual International Conference on International Computing Education Research, Omaha, Nebraska, USA. https://doi.org/10.1145/2787622.2787710
Chang, C.-S., Chung, C.-H., & Chang, J. A. (2020). Influence of problem-based learning games on effective computer programming learning in higher education. Educational Technology Research and Development, 68(5), 2615-2634. https://doi.org/10.1007/s11423-020-09784-3
Chao, P.-Y. (2016). Exploring students′ computational practice, design and performance of problem-solving through a visual programming environment. Computers & Education, 95, 202-215. https://doi.org/10.1016/j.compedu.2016.01.010
Cheung, L. P., & Yang, H. (2017). Heterogeneous Features Integration in Deep Knowledge Tracing. In (pp. 653-662). Springer International Publishing. https://doi.org/10.1007/978-3-319-70096-0_67
Chung, C.-H., Pasquini, L. A., & Koh, C. E. (2013). Web-based learning management system considerations for higher education. Learning and Performance Quarterly, 1(4), 24-37. https://www.learntechlib.org/p/41809/
Corbett, A. T., & Anderson, J. R. (1995). Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modelling and User-Adapted Interaction, 4(4), 253-278. https://doi.org/10.1007/bf01099821
Deperlioglu, O., & Kose, U. (2013). The effectiveness and experiences of blended learning approaches to computer programming education. Computer Applications in Engineering Education, 21(2), 328-342. https://doi.org/10.1002/cae.20476
Devasia, T., Vinushree, T. P., & Hegde, V. (2016, 16-18 March 2016). Prediction of students performance using Educational Data Mining 2016 International Conference on Data Mining and Advanced Computing (SAPIENCE), https://doi.org/10.1109/SAPIENCE.2016.7684167
Fajari, L. E. W., Sarwanto, & Chumdari. (2020). Student critical thinking skills and learning motivation in elementary students. Journal of Physics: Conference Series, 1440(1), 012104. https://doi.org/10.1088/1742-6596/1440/1/012104
Furner, J. M., & Gonzalez-DeHass, A. (2011). How do students’ mastery and performance goals relate to math anxiety? Eurasia Journal of Mathematics, Science and Technology Education, 7(4), 227-242. https://doi.org/10.12973/ejmste/75209
George, D., & Mallery, P. (2019). IBM SPSS statistics 26 step by step: A simple guide and reference. Routledge. https://doi.org/10.4324/9780429056765
Grover, S., & Pea, R. (2013). Computational Thinking in K–12:A Review of the State of the Field. Educational Researcher, 42(1), 38-43. https://doi.org/10.3102/0013189x12463051
Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer science course for middle school students. Computer Science Education, 25(2), 199-237. https://doi.org/10.1080/08993408.2015.1033142
Guswara, A. M., & Purwanto, W. (2021). The Contribution of Google Classroom Application and Motivation to The Learning Outcomes of Web Programming. Journal of Education Technology, 4(4), 424. https://doi.org/10.23887/jet.v4i4.29896
Hamuy, E., & Galaz, M. (2010). Information versus Communication in Course Management System participation [Article]. Computers & Education, 54(1), 169-177. https://doi.org/10.1016/j.compedu.2009.08.001
Hasan, R., Palaniappan, S., Raziff, A. R. A., Mahmood, S., & Sarker, K. U. (2018, 13-14 Aug. 2018). Student Academic Performance Prediction by using Decision Tree Algorithm. 2018 4th International Conference on Computer and Information Sciences (ICCOINS),
Hegde, V., & Prageeth, P. P. (2018, 19-20 Jan. 2018). Higher education student dropout prediction and analysis through educational data mining. 2018 2nd International Conference on Inventive Systems and Control (ICISC),
Hernández-Blanco, A., Herrera-Flores, B., Tomás, D., & Navarro-Colorado, B. (2019). A systematic review of deep learning approaches to educational data mining. Complexity, 2019. https://doi.org/10.1155/2019/1306039
Hien, N. T. N., & Haddawy, P. (2007). A decision support system for evaluating international student applications 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports, https://doi.org/10.1109/FIE.2007.4417958
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. https://doi.org/doi.org/10.1007/978-3-642-24797-2_4
Huitt, W. (2001). Motivation to learn: An overview. Educational psychology interactive, 12(3), 29-36. http://www.edpsycinteractive.org/topics/motivation/motivate.html
Hung, H.-C., Liu, I.-F., Liang, C.-T., & Su, Y.-S. (2020). Applying Educational Data Mining to Explore Students’ Learning Patterns in the Flipped Learning Approach for Coding Education. Symmetry, 12(2), 213. https://doi.org/10.3390/sym12020213
Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all learners in school-wide computational thinking: A cross-case qualitative analysis. Computers & Education, 82, 263-279. https://doi.org/https://doi.org/10.1016/j.compedu.2014.11.022
Jenkins, T. (2001). The motivation of students of programming Proceedings of the 6th annual conference on Innovation and technology in computer science education, Canterbury, United Kingdom. https://doi.org/10.1145/377435.377472
Jenkins, T. (2002). On the difficulty of learning to program.
Jensen, F. V., & Nielsen, T. D. (2007). Bayesian networks and decision graphs (Vol. 2). Springer. https://doi.org/10.1007/978-1-4757-3502-4
Jiang, B., Wu, S., Yin, C., & Zhang, H. (2020). Knowledge Tracing Within Single Programming Practice Using Problem-Solving Process Data. IEEE Transactions on Learning Technologies, 13(4), 822-832. https://doi.org/10.1109/TLT.2020.3032980
Jiau, H. C., Chen, J. C., & Ssu, K. F. (2009). Enhancing Self-Motivation in Learning Programming Using Game-Based Simulation and Metrics. IEEE Transactions on Education, 52(4), 555-562. https://doi.org/10.1109/TE.2008.2010983
Jokhan, A., Sharma, B., & Singh, S. (2019). Early warning system as a predictor for student performance in higher education blended courses. Studies in Higher Education, 44(11), 1900-1911. https://doi.org/10.1080/03075079.2018.1466872
Kakeshita, T., & Murata, M. (2017, 9-13 July 2017). Utilizing Programming Education Support Tool Pgtracer in an Actual Programming Course 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), https://10.1109/IIAI-AAI.2017.36
Kakeshita, T., & Murata, M. (2018). Application of programming education support tool pgtracer for homework assignment. International Journal of Learning Technologies and Learning Environments, 1(1), 41-60. https://doi.org/10.52731/ijltle.v1.i1.293
Kakeshita, T., & Ohta, K. (2015). Student log analysis functions for web-based programming education support tool pgtracer Proceedings of the 17th International Conference on Information Integration and Web-based Applications & Services, Brussels, Belgium. https://doi.org/10.1145/2837185.2837227
Kakeshita, T., Yanagita, R., & Ohta, K. (2015, 2015/04). A Programming Education Support Tool pgtracer utilizing Fill-in-the-Blank Questions-Overview and Student Functions https://doi.org/10.2991/ermm-15.2015.43
Kasurinen, J., & Nikula, U. (2009). Estimating programming knowledge with Bayesian knowledge tracing. SIGCSE Bull., 41(3), 313–317. https://doi.org/10.1145/1595496.1562972
Khan, A., & Ghosh, S. K. (2021). Student performance analysis and prediction in classroom learning: A review of educational data mining studies. Education and Information Technologies, 26(1), 205-240. https://doi.org/10.1007/s10639-020-10230-3
Kleinginna, P. R., & Kleinginna, A. M. (1981). A categorized list of emotion definitions, with suggestions for a consensual definition. Motivation and emotion, 5(4), 345-379. https://doi.org/doi.org/10.1007/BF00992553
Kouis, D., Kyprianos, K., Ermidou, P., Kaimakis, P., & Koulouris, A. (2020). A framework for assessing LMSs e-courses content type compatibility with learning styles dimensions. Journal of e-Learning and Knowledge Society, 16(2), 73-86. https://doi.org/10.20368/1971-8829/1135204
Lai, Y.-H., Chen, S.-Y., Lai, C.-F., Chang, Y.-C., & Su, Y.-S. (2021). Study on enhancing AIoT computational thinking skills by plot image-based VR. Interactive Learning Environments, 29(3), 482-495. https://doi.org/10.1080/10494820.2019.1580750
Lam, M. S. W., Chan, E. Y. K., Lee, V. C. S., & Yu, Y. T. (2008, 2008//). Designing an Automatic Debugging Assistant for Improving the Learning of Computer Programming Hybrid Learning and Education, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85170-7_32
Law, K. M. Y., Lee, V. C. S., & Yu, Y. T. (2010). Learning motivation in e-learning facilitated computer programming courses. Computers & Education, 55(1), 218-228. https://doi.org/10.1016/j.compedu.2010.01.007
Lee, J., & Yeung, D.-Y. (2019). Knowledge query network for knowledge tracing: How knowledge interacts with skills Proceedings of the 9th International Conference on Learning Analytics & Knowledge, https://doi.org/10.1145/3303772.3303786
Lin, Y.-G., McKeachie, W. J., & Kim, Y. C. (2003). College student intrinsic and/or extrinsic motivation and learning. Learning and Individual Differences, 13(3), 251-258. https://doi.org/https://doi.org/10.1016/S1041-6080(02)00092-4
Liu, D., Dai, H., Zhang, Y., Li, Q., & Zhang, C. (2020). Deep knowledge tracking based on attention mechanism for student performance prediction 2020 IEEE 2nd International Conference on Computer Science and Educational Informatization (CSEI), https://doi.org/10.1109/CSEI50228.2020.9142472
Lu, F., Li, X., Liu, Q., Yang, Z., Tan, G., & He, T. (2007). Research on Personalized E-Learning System Using Fuzzy Set Based Clustering Algorithm Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72588-6_99
Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch Programming Language and Environment. ACM Trans. Comput. Educ., 10(4), Article 16. https://doi.org/10.1145/1868358.1868363
Mazza, R., & Milani, C. (2004). Gismo: a graphical interactive student monitoring tool for course management systems International Conference on Technology Enhanced Learning, Milan,
Minn, S., Desmarais, M. C., Zhu, F., Xiao, J., & Wang, J. (2019). Dynamic Student Classiffication on Memory Networks for Knowledge Tracing Advances in Knowledge Discovery and Data Mining: 23rd Pacific-Asia Conference, PAKDD 2019, Macau, China, April 14-17, 2019, Proceedings, Part II, Macau, China. https://doi.org/10.1007/978-3-030-16145-3_13
Minn, S., Yu, Y., Desmarais, M. C., Zhu, F., & Vie, J. (2018, 17-20 Nov. 2018). Deep Knowledge Tracing and Dynamic Student Classification for Knowledge Tracing 2018 IEEE International Conference on Data Mining (ICDM), https://doi.org/10.1109/ICDM.2018.00156
Montero, S., Arora, A., Kelly, S., Milne, B., & Mozer, M. (2018). Does deep knowledge tracing model interactions among skills? Proceedings of the 11th International Conference on Educational Data Mining, https://eric.ed.gov/?id=ED593213
Novianti, C., Sadipun, B., & Balan, J. M. (2020). Pengaruh Motivasi Belajar Terhadap Hasil Belajar Matematika Peserta Didik. SPEJ (Science and Physic Education Journal), 3(2), 57-75. https://doi.org/10.31539/spej.v3i2.992
Oudeyer, P.-Y., & Kaplan, F. (2009, 2009-November-02). What is intrinsic motivation? A typology of computational approaches [Original Research]. Frontiers in Neurorobotics, https://www.frontiersin.org/article/10.3389/neuro.12.006.2007
Pala, F. K., & Mıhcı Türker, P. (2021). The effects of different programming trainings on the computational thinking skills. Interactive Learning Environments, 29(7), 1090-1100. https://doi.org/10.1080/10494820.2019.1635495
Pedro, M. O., Baker, R., Bowers, A., & Heffernan, N. (2013). Predicting college enrollment from student interaction with an intelligent tutoring system in middle school Educational Data Mining 2013, https://www.sweetsanpedro.com/research/EDM2013.pdf
Pelánek, R. (2014). A Brief Overview of Metrics for Evaluation of Student Models EDM (Workshops), https://doi.org/10.1.1.444.4198
Piech, C., Spencer, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L., & Sohl-Dickstein, J. (2015). Deep Knowledge Tracing. arXiv pre-print server. https://doi.org/arxiv:1506.05908
Prada, M. Á., Domínguez, M., Vicario, J. L., Alves, P. A. V., Barbu, M., Podpora, M., Spagnolini, U., Pereira, M. J. V., & Vilanova, R. (2020). Educational Data Mining for Tutoring Support in Higher Education: A Web-Based Tool Case Study in Engineering Degrees. IEEE Access, 8, 212818-212836. https://doi.org/10.1109/ACCESS.2020.3040858
Pratiwi, N. D., Agustini, F., & Widyaningrum, A. (2019). Pengaruh motivasi belajar pada Penerapan model kooperatif tipe team Assisted individualization (TAI) terhadap hasil belajar IPA siswa kelas III SD Negeri Puri 03 Pati. Jurnal Refleksi Pembelajaran (JRP), 4(1), 9-13. https://ejurnalkotamadiun.org/index.php/JRP/article/view/270
Pu, S., Yudelson, M., Ou, L., & Huang, Y. (2020). Deep Knowledge Tracing with Transformers. In (pp. 252-256). Springer International Publishing. https://doi.org/10.1007/978-3-030-52240-7_46
Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable game design and the development of a checklist for getting computational thinking into public schools Proceedings of the 41st ACM technical symposium on Computer science education, Milwaukee, Wisconsin, USA. https://doi.org/10.1145/1734263.1734357
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618. https://doi.org/10.1109/TSMCC.2010.2053532
Romero, C., Ventura, S., & García, E. (2008). Data mining in course management systems: Moodle case study and tutorial. Computers & Education, 51(1), 368-384. https://doi.org/10.1016/j.compedu.2007.05.016
Samuel, A. L. (1967). Some Studies in Machine Learning Using the Game of Checkers. II—Recent Progress. IBM Journal of Research and Development, 11(6), 601-617. https://doi.org/10.1147/rd.116.0601
Saputra, H. D., Ismet, F., & Andrizal, A. (2018). Pengaruh motivasi terhadap hasil belajar siswa SMK. Invotek: Jurnal Inovasi Vokasional dan Teknologi, 18(1), 25-30. https://doi.org/10.24036/invotek.v18i1.168
Selby, C., & Woollard, J. (2013). Computational thinking: the developing definition. https://eprints.soton.ac.uk/356481/
Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142-158. https://doi.org/10.1016/j.edurev.2017.09.003
Slee, N. J., & Jacobs, M. H. (2017). Trialling the use of Google Apps together with online marking to enhance collaborative learning and provide effective feedback. F1000Research, 4(177), 177. https://doi.org/10.12688/f1000research.6520.2
Smith, V. C., Lange, A., & Huston, D. R. (2012). Predictive modeling to forecast student outcomes and drive effective interventions in online community college courses. Journal of asynchronous learning networks, 16(3), 51-61. https://doi.org/10.24059/olj.v16i3.275
Su, Y.-S., & Lai, C.-F. (2021). Applying educational data mining to explore viewing behaviors and performance with flipped classrooms on the social media platform Facebook. Frontiers in Psychology, 12, 653018. https://doi.org/10.3389/fpsyg.2021.653018
Sun, J. C.-Y., & Hsieh, P.-H. (2018). Application of a gamified interactive response system to enhance the intrinsic and extrinsic motivation, student engagement, and attention of English learners. Journal of Educational Technology & Society, 21(3), 104-116. http://www.jstor.org/stable/26458511
Sun, Y., Wang, L., Xie, Q., Dong, Y., & Lin, X. (2020). Online Programming Education Modeling and Knowledge Tracing International Conference on Knowledge Science, Engineering and Management, https://doi.org/10.1007/978-3-030-55130-8_23
Tang, S., Peterson, J. C., & Pardos, Z. A. (2016). Deep neural networks and how they apply to sequential education data Proceedings of the Third (2016) ACM Conference on Learning@ Scale, https://doi.org/10.1145/2876034.2893444
Thuraisingham, B. (2000). A primer for understanding and applying data mining. It Professional, 2(1), 28-31. https://doi.org/10.1109/6294.819936
Torre, M. V., Tan, E., & Hauff, C. (2020). edX log data analysis made easy https://dx.doi.org/10.1145/3375462.3375510
Tovar, E., & Soto, Ó. (2010). The use of competences assessment to predict the performance of first year students 2010 IEEE Frontiers in Education Conference (FIE), https://doi.org/10.1109/FIE.2010.5673566
Tsai, M.-J., Liang, J.-C., & Hsu, C.-Y. (2021). The Computational Thinking Scale for Computer Literacy Education. Journal of Educational Computing Research, 59(4), 579-602. https://doi.org/10.1177/0735633120972356
Voos, R. (2003). Blended learning: What is it and where might it take us. Sloan-C View, 2(1), 2-5.
Wang, L., Sy, A., Liu, L., & Piech, C. (2017a). Deep Knowledge Tracing On Programming Exercises. In Proceedings of the fourth (2017) ACM conference on learning@ scale (pp. 201-204). https://doi.org/10.1145/3051457.3053985
Wang, L., Sy, A., Liu, L., & Piech, C. (2017b). Learning to Represent Student Knowledge on Programming Exercises Using Deep Learning. International Educational Data Mining Society. https://eric.ed.gov/?id=ED596596
Wang, T., & Mitrovic, A. (2002). Using neural networks to predict student′s performance International Conference on Computers in Education, 2002. Proceedings., https://doi.org/10.1109/CIE.2002.1186127
Wei, W., Jui-Feng, W., Jun-Ming, S., & Shian-Shyong, T. (2004, 20-23 Oct. 2004). Learning portfolio analysis and mining in SCORM compliant environment. 34th Annual Frontiers in Education, 2004. FIE 2004.,
Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717-3725. https://doi.org/10.1098/rsta.2008.0118
Xiao, L. L., & Rahman, S. S. B. A. (2017). Predicting learning styles based on students′ learning behaviour using correlation analysis. Current Science, 113(11), 2090-2096. http://www.jstor.org/stable/26494920
Xiong, X., Zhao, S., Van Inwegen, E. G., & Beck, J. E. (2016). Going deeper with deep knowledge tracing. International Educational Data Mining Society.
Yan, Y., Hara, K., Nakano, H., Kazuma, T., & He, A. (2016). A method to describe student learning status for personalized computer programming e-learning environment 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA), https://doi.org/10.1109/AINA.2016.38
Yang, H., & Cheung, L. P. (2018). Implicit heterogeneous features embedding in deep knowledge tracing. Cognitive Computation, 10(1), 3-14. https://doi.org/10.1007/s12559-017-9522-0
Zhang, J.-H., Meng, B., Zou, L.-C., Zhu, Y., & Hwang, G.-J. (2021). Progressive flowchart development scaffolding to improve university students’ computational thinking and programming self-efficacy. Interactive Learning Environments, 1-18. https://doi.org/10.1080/10494820.2021.1943687
Zhang, L., Xiong, X., Zhao, S., Botelho, A., & Heffernan, N. T. (2017). Incorporating rich features into deep knowledge tracing Proceedings of the fourth (2017) ACM conference on learning@ scale, https://doi.org/10.1145/3051457.3053976
Zhu, R., Zhang, D., Han, C., Gao, M., Lu, X., Qian, W., & Zhou, A. (2021). Programming Knowledge Tracing: A Comprehensive Dataset and A New Model. arXiv preprint arXiv:2112.08273. https://doi.org/10.48550/arXiv.2112.08273 |