參考文獻 |
中文文獻
蘇柏勳(2012)。對話代理人中問句補全及問答句對之自動產生〔未出版之碩士論文〕。
國立成功大學資訊工程學系。
魏彰村(2017)。運用爬蟲技術之主題導向即時通訊聊天機器人設計與實現:以籃球領域諮詢結合LINE APP實作為例〔未出版之碩士論文〕。國立中正大學通訊資訊數位學習。
楊雅嵐(2018)。對話式服務應用範圍與價值之探索性研究-以臺灣 Chatbot 業者為例〔未出版之碩士論文〕。國立中央大學資訊管理學系。
廖健智(2019)。國小社會科聊天機器人之學習成效研究〔未出版之碩士論文〕。南華大學資訊管理學系。
徐銘駿(2020)。具推薦書籍功能之閱讀島系統架構設計〔未出版之碩士論文〕。國立中央大學網路學習科技研究所。
鄭博晏、洪暉鈞(2021年3月25-26日)。結合自我調整功能之書籍閱讀數位同伴系統之設計初探。第十六屆台灣數位學習發展研討會TWELF 2021,宜蘭市,台灣。
鄭博晏、洪暉鈞、陳德懷(2022年5月28日-6月1日)。自我調整數位閱讀同伴系統建置與閱讀行為模式分析。第二十六屆全球華人計算機教育應用大會(GCCCE 2022),新竹市,台灣。
謝志偉(2003)。自我調節學習理論之探究 [A Theortical Exploration of Self-Regulated Learning]。課程與教學,6(3),147-168+181。https://doi.org/10.6384/ciq.200307.0147賴森堂、黃彥綸(2018年1月31日)。LINE通訊軟體結合 Chatbot 改善設備連線測試效率與品質。電腦稽核期刊,(37),25-36。
英文文獻
Adam, N. L., Zulkafli, M. A., Soh, S. C., & Kamal, N. A. M. (2017, 16-17 Nov. 2017). Preliminary study on educational recommender system. 2017 IEEE Conference on e-Learning, e-Management and e-Services (IC3e) https://doi.org/10.1109/IC3e.2017.8409245
Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering, 17(6), 734-749. https://doi.org/10.1109/TKDE.2005.99
Akçayır, M., Akçayır, G., Pektaş, H. M., & Ocak, M. A. (2016). Augmented reality in science laboratories: The effects of augmented reality on university students’ laboratory skills and attitudes toward science laboratories. Computers in Human Behavior, 57, 334-342. https://doi.org/10.1016/j.chb.2015.12.054
Akçıl, U., & Arap, İ. (2009). The opinions of education faculty students on learning processes involving e-portfolios. Procedia-Social and Behavioral Sciences, 1(1), 395-400. https://doi.org/10.1016/j.sbspro.2009.01.071
Asarta, C. J., & Schmidt, J. R. (2013). Access Patterns of Online Materials in a Blended Course. Decision Sciences Journal of Innovative Education, 11(1), 107-123. https://doi.org/10.1111/j.1540-4609.2012.00366.x
Askov, E. N., & Fischbach, T. J. (1973). An investigation of primary pupils’ attitudes toward reading. The Journal of Experimental Education, 41(3), 1-7. https://doi.org/10.1080/00220973.1973.11011401
Bakeman, R., & Gottman, J. M. (1997). Observing interaction: An introduction to sequential analysis. Cambridge university press. https://doi.org/10.1017/CBO9780511527685
Bannert, M., Sonnenberg, C., Mengelkamp, C., & Pieger, E. (2015). Short- and long-term effects of students’ self-directed metacognitive prompts on navigation behavior and learning performance. Computers in Human Behavior, 52, 293-306. https://doi.org/10.1016/j.chb.2015.05.038
Barnard, L., Lan, W. Y., To, Y. M., Paton, V. O., & Lai, S.-L. (2009). Measuring self-regulation in online and blended learning environments. The internet and higher education, 12(1), 1-6. https://doi.org/10.1016/j.iheduc.2008.10.005
Barragáns-Martínez, A. B., Costa-Montenegro, E., Burguillo, J. C., Rey-López, M., Mikic-Fonte, F. A., & Peleteiro, A. (2010). A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition. Information Sciences, 180(22), 4290-4311. https://doi.org/10.1016/j.ins.2010.07.024
Beck, A. M., & Katcher, A. H. (1996). Between pets and people: The importance of animal companionship. Purdue University Press.
Benitez, A. B., Zhong, D., Chang, S.-F., & Smith, J. R. (2001). MPEG-7 MDS content description tools and applications. International Conference on Computer Analysis of Images and Patterns (pp. 41-52). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44692-3_6
Bii, P. (2013). Chatbot technology: A possible means of unlocking student potential to learn how to learn. Educational Research, 4(2), 218-221. https://www.researchgate.net/publication/291813780
Bland, J. M., & Altman, D. G. (1997). Statistics notes: Cronbach′s alpha. Bmj, 314(7080), 572. https://doi.org/10.1136/bmj.314.7080.572
Boekaerts, M. (2001). Context sensitivity: Activated motivational beliefs, current concerns and emotional arousal. In Motivation in learning contexts: Theoretical advances and methodological implications. (pp. 17-32). Pergamon Press. https://www.researchgate.net/publication/232597700
Borchers, J. O. (2008). A pattern approach to interaction design. In Cognition, Communication and Interaction (pp. 114-131). Springer. https://doi.org/10.1007/978-1-84628-927-9_7
Bull, S. (2004). Supporting learning with open learner models. Planning, 29(14), 1. https://doi.org/10.1007/978-3-642-14363-2_15
Bull, S., & Kay, J. (2007). Student models that invite the learner in: The SMILI:() Open learner modelling framework. International Journal of Artificial Intelligence in Education, 17(2), 89-120. https://www.researchgate.net/publication/262317857
Burke, R. (2000). Knowledge-based recommender systems. Encyclopedia of library and information systems, 69(Supplement 32), 175-186. https://www.researchgate.net/publication/2418883
Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User modeling and user-adapted interaction, 12(4), 331-370. https://doi.org/10.1023/A:1021240730564
Burke, R. (2007). Hybrid web recommender systems. The adaptive web, 377-408. https://doi.org/10.1007/978-3-540-72079-9_12
Cai, S., Chiang, F.-K., Sun, Y., Lin, C., & Lee, J. J. (2017). Applications of augmented reality-based natural interactive learning in magnetic field instruction. Interactive Learning Environments, 25(6), 778-791. https://doi.org/10.1080/10494820.2016.1181094
Cerdán, R., Vidal-Abarca, E., Martínez, T., Gilabert, R., & Gil, L. (2009). Impact of question-answering tasks on search processes and reading comprehension. Learning and Instruction, 19(1), 13-27. https://doi.org/10.1016/j.learninstruc.2007.12.003
Chan, T.-W., & Baskin, A. B. (1990). Learning companion systems. Intelligent tutoring systems: At the crossroads of artificial intelligence and education, 1, 6-33.
Chan, T.-W., Looi, C.-K., Chang, B., Chen, W., Wong, L.-H., Wong, S. L., Yu, F.-Y., Mason, J., Liu, C.-C., & Shih, J.-L. (2019). IDC theory: creation and the creation loop. Research and Practice in Technology Enhanced Learning, 14(1), 1-29. https://doi.org/10.1186/s41039-019-0120-5
Chan, T.-W., Looi, C.-K., Chen, W., Wong, L.-H., Chang, B., Liao, C. C., Cheng, H., Chen, Z.-H., Liu, C.-C., & Kong, S.-C. (2018). Interest-driven creator theory: towards a theory of learning design for Asia in the twenty-first century. Journal of Computers in Education, 5(4), 435-461. https://doi.org/10.1007/s40692-018-0122-0
Chang, C.-C., & Tseng, K.-H. (2011). Using a web-based portfolio assessment system to elevate project-based learning performances. Interactive Learning Environments, 19(3), 211-230. https://doi.org/10.1080/03075079.2018.1510388
Chen, C.-H., & Law, V. (2016). Scaffolding individual and collaborative game-based learning in learning performance and intrinsic motivation. Computers in Human Behavior, 55, 1201-1212. https://doi.org/10.1016/j.chb.2015.03.010
Chen, S. Y. (2008). Who is the avid adolescent reader in Taiwan? The role of gender, family, and teacher. Journal of Adolescent & Adult Literacy, 52(3), 214-223. https://doi.org/10.1598/JAAL.52.3.4
Chien, T.-C., Chen, Z.-H., Ko, H.-W., Ku, Y.-M., & Chan, T.-W. (2015). My-Bookstore: using information technology to support children′s classroom reading and book recommendation. Journal of Educational Computing Research, 52(4), 455-474. https://doi.org/10.1177/0735633115571920
Cohen, P., West, S. G., & Aiken, L. S. (2014). Applied multiple regression/correlation analysis for the behavioral sciences. Psychology press. https://doi.org/10.4324/9780203774441
Corno, L., & Rohrkemper, M. (1985). The intrinsic motivation to learn in classrooms. Research on motivation in education, 2, 53-90. https://ro.uow.edu.au/jseem/vol2/iss1/6/
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. psychometrika, 16(3), 297-334. https://doi.org/10.1007/BF02310555
De Campos, L. M., Fernández-Luna, J. M., Huete, J. F., & Rueda-Morales, M. A. (2010). Combining content-based and collaborative recommendations: A hybrid approach based on Bayesian networks. International journal of approximate reasoning, 51(7), 785-799. https://doi.org/10.1016/j.ijar.2010.04.001
De Pessemier, T., Dooms, S., & Martens, L. (2014). Context-aware recommendations through context and activity recognition in a mobile environment. Multimedia Tools and Applications, 72(3), 2925-2948. https://doi.org/10.1007/s11042-013-1582-x
Deci, E. L., Koestner, R., & Ryan, R. M. (2001). Extrinsic rewards and intrinsic motivation in education: Reconsidered once again. Review of educational research, 71(1), 1-27. https://doi.org/10.1006/ceps.1999.1020
Delen, E., Liew, J., & Willson, V. (2014). Effects of interactivity and instructional scaffolding on learning: Self-regulation in online video-based environments. Computers & Education, 78, 312-320. https://doi.org/10.1016/j.compedu.2014.06.018
Deschênes, M. (2020). Recommender systems to support learners’ Agency in a Learning Context: a systematic review. International Journal of Educational Technology in Higher Education, 17(1), 1-23. https://doi.org/10.1186/s41239-020-00219-w
Dillon, A., & Jobst, J. (2005). Multimedia learning with hypermedia. The Cambridge handbook of multimedia learning, 569-588. https://doi.org/10.1017/CBO9780511816819
Ekstrand, M. D., Riedl, J. T., & Konstan, J. A. (2011). Collaborative filtering recommender systems. Foundations and Trends® in Human–Computer Interaction, 4(2), 81-173. https://doi.org/10.1561/1100000009
Franchi, S., & Guzeldere, G. (1995). Constructions of the Mind: Artificial Intelligence and the Humanities. Stanford Humanities Review. https://books.google.com.tw/books?id=HI-nHAAACAAJ
George, D., & Mallery, P. (2019). IBM SPSS statistics 26 step by step: A simple guide and reference. Routledge.
Goda, Y., Yamada, M., Matsukawa, H., Hata, K., & Yasunami, S. (2014). Conversation with a chatbot before an online EFL group discussion and the effects on critical thinking. The Journal of Information and Systems in Education, 13(1), 1-7. https://doi.org/10.12937/ejsise.13.1
Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61-70. https://doi.org/10.1145/138859.138867
Goodman, K. (1998). 談閱讀 (洪月女譯). 台北市: 心理. 原作 1996 年出版.
Greene, J. A., & Azevedo, R. (2007). Adolescents′ Use of Self-Regulatory Processes and Their Relation to Qualitative Mental Model Shifts While Using Hypermedia. Journal of Educational Computing Research, 36(2), 125-148. https://doi.org/10.2190/G7M1-2734-3JRR-8033
Guthrie, J. T., Hoa, L. W., Wigfield, A., Tonks, S. M., & Perencevich, K. C. (2005). From spark to fire: Can situational reading interest lead to long‐term reading motivation? Literacy Research and Instruction, 45(2), 91-117. https://doi.org/10.1080/19388070609558444
Guthrie, J. T., & Wigfield, A. (1997). Reading engagement: Motivating readers through integrated instruction. ERIC.
Hadwin, A. F., Oshige, M., Gress, C. L., & Winne, P. H. (2010). Innovative ways for using gStudy to orchestrate and research social aspects of self-regulated learning. Computers in Human Behavior, 26(5), 794-805. https://doi.org/10.1016/j.chb.2007.06.007
Han, X., Tian, X., Cheng, H. N. H., Chang, W. C., Liao, C. C. Y., & Liu, S. (2017, 27-29 June 2017). Identifying Students’ Test-Taking Behavioral Patterns in an Online Chinese Reading Assessment System. 2017 International Symposium on Educational Technology (ISET) (pp. 158-162). IEEE. https://doi.org/10.1109/ISET.2017.44
Harlen, W., & Deakin Crick, R. (2003). Testing and motivation for learning. Assessment in Education: principles, policy & practice, 10(2), 169-207. https://doi.org/10.1080/0969594032000121270
Heller, B., Proctor, M., Mah, D., Jewell, L., & Cheung, B. (2005). Freudbot: An Investigation of Chatbot Technology in Distance Education EdMedia + Innovate Learning 2005, Montreal, Canada. https://www.learntechlib.org/p/20691
Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS), 22(1), 5-53. https://doi.org/10.1145/963770.963772
Ho, E., Bin, J., & Chang, J. (2012). Survey of middle school student learning: Saving the generation of unmotivated. Retrieved February, 3, 2018.
Händel, M., Wimmer, B., & Ziegler, A. (2020). E-portfolio use and its effects on exam performance–a field study. Studies in Higher Education, 45(2), 258-270. https://doi.org/10.1080/03075079.2018.1510388
Hou, H.-T., Sung, Y.-T., & Chang, K.-E. (2009). Exploring the behavioral patterns of an online knowledge-sharing discussion activity among teachers with problem-solving strategy. Teaching and Teacher Education, 25(1), 101-108. https://doi.org/10.1016/j.tate.2008.07.006
Hsieh, M.-Y., Chou, W.-K., & Li, K.-C. (2017). Building a mobile movie recommendation service by user rating and APP usage with linked data on Hadoop. Multimedia Tools and Applications, 76(3), 3383-3401. https://doi.org/10.1007/s11042-016-3833-0
Huang, H.-C., Tsai, Y.-H., & Huang, S.-H. (2015). The Relevant Factors in Promoting Reading Activities in Elementary Schools. International Journal of Evaluation and Research in Education, 4(2), 62-70. https://doi.org/10.11591/ijere.v4i2.4493
Hui, L., Jun, S., Zhang, S., & Yun, H. (2017, 22-25 Aug. 2017). Implementation of intelligent recommendation system for learning resources. 2017 12th International Conference on Computer Science and Education (ICCSE) (pp. 139-144). IEEE. https://doi.org/10.1201/9781003027799
Hunt Jr, L. C. (1967). Evaluation through teacher-pupil conferences. The evaluation of children’s reading achievement, 111-125.
Hwang, G.-J., Wang, S.-Y., & Lai, C.-L. (2021). Effects of a social regulation-based online learning framework on students’ learning achievements and behaviors in mathematics. Computers & Education, 160, 104031. https://doi.org/10.1016/j.compedu.2020.104031
Jackson, P. (1986). Introduction to expert systems.
Ji Won, Y. (2015). Examining the Effect of Academic Procrastination on Achievement Using LMS Data in e-Learning. Journal of Educational Technology & Society, 18(3), 64-74. http://www.jstor.org/stable/jeductechsoci.18.3.64
Järvelä, S. (2001). Shifting research on motivation and cognition to an integrated approach on learning and motivation in context. Motivation in learning contexts: Theoretical advances and methodological implications, 3-14. https://www.researchgate.net/publication/288029174
Karakaya, M. Ö., & Aytekin, T. (2018). Effective methods for increasing aggregate diversity in recommender systems. knowledge and Information Systems, 56(2), 355-372. https://doi.org/10.1007/s10115-017-1135-0
Khribi, M. K., Jemni, M., & Nasraoui, O. (2012). Automatic personalization in e-learning based on recommendation systems: An overview. Intelligent and Adaptive Learning Systems: Technology Enhanced Support for Learners and Teachers, 19-33. https://doi.org/10.4018/978-1-60960-842-2.ch002
Kirkegaard, C., Gulz, A., & Silvervarg, A. (2014). Introducing a challenging teachable agent. International Conference on Learning and Collaboration Technologies (pp. 53-62). Springer, Cham. https://doi.org/10.1007/978-3-319-07482-5_6
Kong, S.-C. (2016). A framework of curriculum design for computational thinking development in K-12 education. Journal of Computers in Education, 3(4), 377-394. https://doi.org/10.1007/s40692-016-0076-z
Kong, S.-C., Chiu, M. M., & Lai, M. (2018). A study of primary school students′ interest, collaboration attitude, and programming empowerment in computational thinking education. Computers & Education, 127, 178-189. https://doi.org/10.1016/j.compedu.2018.08.026
Konstan, J. A., & Riedl, J. (2012). Deconstructing recommender systems. IEEE Spectrum, 10, 1-7.
Krashen, S. D. (2004). The power of reading: Insights from the research: Insights from the research. ABC-CLIO.
Krulwich, B. (1997). Lifestyle finder: Intelligent user profiling using large-scale demographic data. AI magazine, 18(2), 37-37. https://doi.org/10.1609/aimag.v18i2.1292
Lalwani, T., Bhalotia, S., Pal, A., Rathod, V., & Bisen, S. (2018). Implementation of a Chatbot System using AI and NLP. International Journal of Innovative Research in Computer Science & Technology (IJIRCST) Volume-6, Issue-3. https://doi.org/10.2139/ssrn.3531782
Lan, Y.-F., Tsai, P.-W., Yang, S.-H., & Hung, C.-L. (2012). Comparing the social knowledge construction behavioral patterns of problem-based online asynchronous discussion in e/m-learning environments. Computers & Education, 59(4), 1122-1135. https://doi.org/10.1016/j.compedu.2012.05.004
Li, J., & Ye, Z. (2020). Course Recommendations in Online Education Based on Collaborative Filtering Recommendation Algorithm. Complexity, 2020, 6619249. https://doi.org/10.1155/2020/6619249
Lilien, G. L., Kotler, P., & Moorthy, K. S. (1992). Marketing models (Vol. 803). Prentice-Hall Englewood Cliffs, NJ.
Lundberg, I., & Sterner, G. (2006). Reading, arithmetic, and task orientation—How are they related? Annals of dyslexia, 56(2), 361-377. https://doi.org/10.1007/s11881-006-0016-0
Müller, N. M., & Seufert, T. (2018). Effects of self-regulation prompts in hypermedia learning on learning performance and self-efficacy. Learning and Instruction, 58, 1-11. https://doi.org/10.1016/j.learninstruc.2018.04.011
Mansor, A. N., Rasul, M. S., Rauf, R. A. A., & Koh, B. L. (2013). Developing and Sustaining Reading Habit Among Teenagers. The Asia-Pacific Education Researcher, 22(4), 357-365. https://doi.org/10.1007/s40299-012-0017-1
McCracken, R. A., & McCracken, M. J. (1978). Modeling is the key to sustained silent reading. The Reading Teacher, 31(4), 406-408. https://www.jstor.org/stable/20194551
Meryem, G., Douzi, K., & Chantit, S. (2016, 19-20 Oct. 2016). Toward an E-orientation platform: Using hybrid recommendation systems. 2016 11th International Conference on Intelligent Systems: Theories and Applications (SITA) (pp. 1-6). IEEE. https://doi.org/10.1109/SITA.2016.7772305
Mullis, I. V., Martin, M. O., Foy, P., & Drucker, K. T. (2012). PIRLS 2011 international results in reading. ERIC.
Otebolaku, A. M., & Andrade, M. T. (2014). Context-Aware Media Recommendations. 2014 28th International Conference on Advanced Information Networking and Applications Workshops (pp. 191-196). IEEE. https://doi.org/10.1109/WAINA.2014.40
Panadero, E., Jonsson, A., & Botella, J. (2017). Effects of self-assessment on self-regulated learning and self-efficacy: Four meta-analyses. Educational Research Review, 22, 74-98. https://doi.org/10.1016/j.edurev.2017.08.004
Pilgreen, J. L. (2000). The SSR handbook: How to organize and manage a sustained silent reading program. Boynton/Cook Publishers Portsmouth, NH.
Pintrich, P. R., & De Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of educational psychology, 82(1), 33. https://doi.org/10.1037/0022-0663.82.1.33
Pintrich, P. R., & Zeidner, M. (2000). Handbook of self-regulation. Elsevier Science & Technology. https://doi.org/10.1016/B978-0-12-109890-2.X5027-6
Reeves, B., & Nass, C. (1996). The media equation: How people treat computers, television, and new media like real people. Cambridge, UK, 10, 236605. https://www.researchgate.net/publication/37705092
Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58. https://doi.org/10.1145/245108.245121
Ricci, F., Rokach, L., & Shapira, B. (2015). Recommender systems: introduction and challenges. In Recommender systems handbook (pp. 1-34). Springer. https://doi.org/10.1007/978-1-4899-7637-6_1
Rich, E. (1979). User modeling via stereotypes. Cognitive science, 3(4), 329-354. https://doi.org/10.1016/S0364-0213(79)80012-9
Rivera, A. C., Tapia-Leon, M., & Lujan-Mora, S. (2018). Recommendation systems in education: A systematic mapping study. International Conference on Information Technology & Systems (pp. 937-947). Springer, Cham. https://doi.org/10.1007/978-3-319-73450-7_89
Roller, S., Dinan, E., Goyal, N., Ju, D., Williamson, M., Liu, Y., Xu, J., Ott, M., Shuster, K., & Smith, E. M. (2020). Recipes for building an open-domain chatbot. arXiv preprint arXiv:2004.13637.
Sackett, G. P. (1978). Observing behavior: I. Theory and applications in mental retardation.
Schafer, J. B., Konstan, J., & Riedl, J. (1999). Recommender systems in e-commerce. Proceedings of the 1st ACM conference on Electronic commerce (pp. 158-166).
Schmitz, B., & Wiese, B. S. (2006). New perspectives for the evaluation of training sessions in self-regulated learning: Time-series analyses of diary data. Contemporary educational psychology, 31(1), 64-96. https://doi.org/10.1016/j.cedpsych.2005.02.002
Schwab, I., Kobsa, A., & Koychev, I. (2001). Learning user interests through positive examples using content analysis and collaborative filtering. Internal Memo, GMD, St. Augustin, Germany. https://www.researchgate.net/publication/2465963
Schwonke, R. (2015). Metacognitive load–Useful, or extraneous concept? Metacognitive and self-regulatory demands in computer-based learning. Journal of Educational Technology & Society, 18(4), 172-184. https://doi.org/http://www.jstor.org/stable/jeductechsoci.18.4.172
Siemens, G., Gašević, D., & Dawson, S. (2015). Preparing for the digital university: A review of the history and current state of distance, blended, and online learning. https://doi.org/10.13140/RG.2.1.3515.8483
Smutny, P., & Schreiberova, P. (2020). Chatbots for learning: A review of educational chatbots for the Facebook Messenger. Computers & Education, 151, 103862. https://doi.org/10.1016/j.compedu.2020.103862
Snow, R. E. (1989). Aptitude-treatment interaction as a framework for research on individual differences in learning. In Learning and individual differences: Advances in theory and research. (pp. 13-59). W H Freeman/Times Books/ Henry Holt & Co.
Stanovich, K. E. (2009). Matthew effects in reading: Some consequences of individual differences in the acquisition of literacy. Journal of education, 189(1-2), 23-55. https://doi.org/10.1177/0022057409189001-204
Sun, Z., Xie, K., & Anderman, L. H. (2018). The role of self-regulated learning in students′ success in flipped undergraduate math courses. The internet and higher education, 36, 41-53. https://doi.org/10.1016/j.iheduc.2017.09.003
Thorat, S. A., & Jadhav, V. (2020). A review on implementation issues of rule-based chatbot systems. Proceedings of the International Conference on Innovative Computing & Communications (ICICC). https://doi.org/10.2139/ssrn.3567047
Timms, M. J. (2016). Letting Artificial Intelligence in Education Out of the Box: Educational Cobots and Smart Classrooms. International Journal of Artificial Intelligence in Education, 26(2), 701-712. https://doi.org/10.1007/s40593-016-0095-y
Tohidi, H., & Jabbari, M. M. (2012). The effects of motivation in education. Procedia-Social and Behavioral Sciences, 31, 820-824. https://doi.org/10.1016/j.sbspro.2011.12.148
Tsai, C. C. (2004). Conceptions of learning science among high school students in Taiwan: A phenomenographic analysis. International Journal of Science Education, 26(14), 1733-1750. https://doi.org/10.1080/0950069042000230776
Turing, A. M. (2009). Computing Machinery and Intelligence. In R. Epstein, G. Roberts, & G. Beber (Eds.), Parsing the Turing Test: Philosophical and Methodological Issues in the Quest for the Thinking Computer (pp. 23-65). Springer Netherlands. https://doi.org/10.1007/978-1-4020-6710-5_3
Urdaneta-Ponte, M. C., Mendez-Zorrilla, A., & Oleagordia-Ruiz, I. (2021). Recommendation Systems for Education: Systematic Review. Electronics, 10(14), 1611. https://doi.org/10.3390/electronics10141611
Van den Boom, G., Paas, F., & Van Merrienboer, J. J. (2007). Effects of elicited reflections combined with tutor or peer feedback on self-regulated learning and learning outcomes. Learning and Instruction, 17(5), 532-548. https://doi.org/10.1016/j.cedpsych.2005.02.002
Veenman, M. V. J. (2011). Alternative assessment of strategy use with self-report instruments: a discussion. Metacognition and Learning, 6(2), 205-211. https://doi.org/10.1007/s11409-011-9080-x
Venkatraman, S. (2017). A proposed business intelligent framework for recommender systems. Informatics (Vol. 4 No. 4, p. 40). MDPI.
Volet, S. (2001). Understanding learning and motivation in context: A multi-dimensional and multi-level cognitive-situative perspective. In Motivation in learning contexts: Theoretical advances and methodological implications. (pp. 57-82). Pergamon Press. http://researchrepository.murdoch.edu.au/id/eprint/8138
Wallace, R. S. (2009). The Anatomy of A.L.I.C.E. In R. Epstein, G. Roberts, & G. Beber (Eds.), Parsing the Turing Test: Philosophical and Methodological Issues in the Quest for the Thinking Computer (pp. 181-210). Springer Netherlands. https://doi.org/10.1007/978-1-4020-6710-5_13
Wang, H., Lu, Z., Li, H., & Chen, E. (2013). A dataset for research on short-text conversations. Proceedings of the 2013 conference on empirical methods in natural language processing (pp. 935-945).
Wang, J.-H., Hsu, S.-H., Chen, S. Y., Ko, H.-W., Ku, Y.-M., & Chan, T.-W. (2014). Effects of a mixed-mode peer response on student response behavior and writing performance. Journal of Educational Computing Research, 51(2), 233-256. https://doi.org/10.2190/EC.51.2.e
Wang, X., Rosenblum, D., & Wang, Y. (2012). Context-aware mobile music recommendation for daily activities. Proceedings of the 20th ACM international conference on Multimedia (pp. 99-108). https://doi.org/10.1145/2393347.2393368
Weizenbaum, J. (1966). ELIZA—a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36-45. https://doi.org/10.1145/365153.365168
Wilensky, R. (1987). The Berkeley UNIX consultant project. In Wissensbasierte Systeme (pp. 286-296). Springer. https://doi.org/10.1007/978-3-642-88719-2_25
Wilson, H. J., Daugherty, P., & Bianzino, N. (2017). The jobs that artificial intelligence will create. MIT Sloan Management Review, 58(4), 14. https://sloanreview.mit.edu/article/will-ai-create-as-many-jobs-as-it-eliminates/
Wong, J., Baars, M., Davis, D., Van Der Zee, T., Houben, G.-J., & Paas, F. (2019). Supporting Self-Regulated Learning in Online Learning Environments and MOOCs: A Systematic Review. International Journal of Human–Computer Interaction, 35(4-5), 356-373. https://doi.org/10.1080/10447318.2018.1543084
Wong, L.-H., Chan, T.-W., Chen, W., Looi, C.-K., Chen, Z.-H., Liao, C. C. Y., King, R. B., & Wong, S. L. (2020). IDC theory: interest and the interest loop. Research and Practice in Technology Enhanced Learning, 15(1), 3. https://doi.org/10.1186/s41039-020-0123-2
Woolf, B. P. (2010). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-learning. Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-373594-2.X0001-9
Xiao, J., Wang, M., Jiang, B., & Li, J. (2018). A personalized recommendation system with combinational algorithm for online learning. Journal of Ambient Intelligence and Humanized Computing, 9(3), 667-677. https://doi.org/10.1007/s12652-017-0466-8
Yin, C., Shi, L., Sun, R., & Wang, J. (2020). Improved collaborative filtering recommendation algorithm based on differential privacy protection. The Journal of Supercomputing, 76(7), 5161-5174. https://doi.org/10.1007/s11227-019-02751-7
Zhang, H., Huang, T., Lv, Z., Liu, S., & Zhou, Z. (2018). MCRS: A course recommendation system for MOOCs. Multimedia Tools and Applications, 77(6), 7051-7069. https://doi.org/10.1007/s11042-017-4620-2
Zhou, X., Dong, D., Wu, H., Zhao, S., Yu, D., Tian, H., Liu, X., & Yan, R. (2016). Multi-view response selection for human-computer conversation. Proceedings of the 2016 conference on empirical methods in natural language processing (pp. 372-381).
Zimmerman, B. J. (2000). Attaining self-regulation: A social cognitive perspective. In Handbook of self-regulation (pp. 13-39). Elsevier. https://doi.org/10.1016/B978-012109890-2/50031-7
Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into practice, 41(2), 64-70. https://doi.org/10.1207/s15430421tip4102_2
Zimmerman, B. J. (2008). Investigating self-regulation and motivation: Historical background, methodological developments, and future prospects. American educational research journal, 45(1), 166-183. https://doi.org/10.3102/0002831207312909
Zimmerman, B. J., Bonner, S., & Kovach, R. (1996). Developing self-regulated learners: Beyond achievement to self-efficacy. American Psychological Association. https://doi.org/10.1037/10213-000
Zimmerman, B. J., & Campillo, M. (2003). Motivating self-regulated problem solvers. The psychology of problem solving, 233262. https://doi.org/10.1017/CBO9780511615771.009
Zimmerman, B. J., & Martinez-Pons, M. (1990). Student differences in self-regulated learning: Relating grade, sex, and giftedness to self-efficacy and strategy use. Journal of educational psychology, 82(1), 51. https://doi.org/10.1037/0022-0663.82.1.51 |