博碩士論文 109521087 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.145.73.79
姓名 周郢(Ying Zhou)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具柔切三相六開關反流器之併網及新型垂降控制策略
(A Grid-Connected ZVS Three-Phase Six-Switch Inverter with Novel Droop Control Technique)
相關論文
★ 微電網逆變器之智慧型控制策略★ 高頻高電流之雙向直流-直流轉換器設計
★ 應用於三相轉換器之被動元件在線監測與無電流感測三相整流器之系統控制★ 結合零序回授補償與無通訊之載波同步於並聯雙向交直流轉換器之環流抑制
★ 三相Vienna整流器無電壓感測線性非時變直接功率控制★ 基於無電流感測三相Vienna整流器之新型電壓判斷成分注入法於平衡及不平衡直流鏈電壓之應用
★ 基於虛擬阻抗孤島交流微電網功率分配及其電壓與頻率恢復控制策略之發展★ 應用於具儲能混合交直流微電網之雙向互連轉換器電壓控制策略
★ 具柔切三相分源逆變器與直交流電壓控制策略研製★ 考慮不平衡電源之三相整流器線性化直接 功率控制之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文著重於研發與電網連接的電能反流器,並對併網同步機制、併網實虛功控制與反流器的柔切效果進行改善。轉換器於併網前須經過併網程序,使本地電壓與電網電壓之電壓振幅、角頻率與相位同步,本論文提出新型相位同步機制,達成快速的相位同步並降低併網瞬間之暫態電流。而在併網後,將由垂降控制維持功率輸送之穩定,而當參考功率命令發生改變,實功與虛功間的耦合關係,將導致其中一者的變化會於另一者產生耦合暫態誤差,所提之新型垂降控制架構將抑制耦合暫態,並保持精確的輸出功率。最後當轉換器具有功因調控時,轉換器之電壓與電流將存在相位差,傳統以載波為基礎之三相六開關反流器零電壓柔性切換策略並無法因應該情形,而使零電壓柔性切換的效果降低。本文所提出的零電壓柔性切換控制策略能延展操作的功率輸出範圍,在有功因調整下將能維持ZVS效果,以提升整體電路之效能。
摘要(英) In this thesis, the grid-connected inverter with synchronization mechanism, droop control and the soft-switching strategy are proposed. Before the converter connected to the grid, it is necessary to process the grid synchronization mechanism. The synchronization mechanism can make the amplitude, frequency and phase of the local voltage synchronize with the grid voltage. When the inverter is operated in grid-connected mode, the droop control is needed to regulate the output of the active power and reactive power. When the power reference command is changed, it will cause a transient error in the power transmission due to the coupling effect of the active power and reactive power. In this thesis, a new droop control scheme is proposed to reduce the coupling and reach accurate output power control. Finally, when the converter controlling the power flow with different power factor, there exists a phase shift between the output voltage and output current. The conventional carrier-based zero voltage soft switching strategy for three-phase six-switch inverters cannot deal with the phase shift, and it will decrease the effect of zero voltage soft switching. In this thesis, a novel active clamping zero voltage soft-switching strategy is proposed to increase the inverter efficiency under power conditioning.
關鍵字(中) ★ 併網
★ 同步機制
★ 垂降控制
★ 零電壓切換
關鍵字(英) ★ grid-connected
★ synchronization mechanism
★ droop control
★ zero voltage switching
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 XIV
第一章 緒論 1
1-1研究背景與動機 1
1-2文獻回顧 2
1-3本論文之貢獻 3
1-4論文內容概述 4
第二章 基本轉換器介紹與併網程序 5
2-1轉換器種類 5
2-2基本轉換器控制 7
2-2-1座標軸轉換 7
2-2-2雙迴路控制 9
2-2-3鎖相迴路 12
2-2-4傳統垂降控制 14
2-2-5電流估測器 18
2-3併網程序 20
2-4新型同步機制之動作原理分析 27
第三章 所提垂降控制策略 29
3-1垂降控制器介紹 29
3-2垂降控制器之模型推導 36
第四章 具功因調控之零電壓柔性切換 51
4-1柔切策略介紹 51
4-2所提柔切策略之電路動作原理分析 63
4-3損耗分析 77
第五章 系統架構與模擬分析 80
5-1模擬軟體介紹 80
5-2併網模擬 82
5-3垂降控制模擬 88
5-4具功因調控柔切模擬 96
第六章 硬體電路製作與實驗結果 103
6-1硬體與微控制器介紹 103
6-1-1 硬體設備與電路 103
6-1-2 微控制器介紹 108
6-2併網實作 111
6-3垂降控制實作 117
6-4具功因調控柔切實作 122
第七章 結論與未來展望 136
7-1論文內容總結 136
7-2未來研究方向 137
參考文獻 138
參考文獻 [1] J. Rocabert, A. Luna, F. Blaabjerg and P. Rodríguez, "Control of Power Converters in AC Microgrids," IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4734-4749, Nov. 2012.
[2] B. Pawar, E. I. Batzelis, S. Chakrabarti and B. C. Pal, "Grid-Forming Control for Solar PV Systems With Power Reserves," IEEE Transactions on Sustainable Energy, vol. 12, no. 4, pp. 1947-1959, Oct. 2021.
[3] S. Fahad, A. Goudarzi and J. Xiang, "From Grid Feeding to Grid Supporting Converters: A Constant Power Active Distribution Network Perspective," 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), 2020, pp. 862-867.
[4] Jong-Woo Choi and S. -K. Sul, "Fast current controller in three-phase AC/DC boost converter using d-q axis crosscoupling," IEEE Transactions on Power Electronics, vol. 13, no. 1, pp. 179-185, Jan. 1998.
[5] R. Kadri, J. Gaubert and G. Champenois, "An Improved Maximum Power Point Tracking for Photovoltaic Grid-Connected Inverter Based on Voltage-Oriented Control," IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 66-75, Jan. 2011.
[6] T. Zhao, Q. Zong, T. Zhang and Y. Xu, "Study of photovoltaic three-phase grid-connected inverter based on the grid voltage-oriented control," 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), 2016, pp. 2055-2060.
[7] J. Guzinski and H. Abu-Rub, "Sensorless induction motor drive with voltage inverter and sine-wave filter," 2013 IEEE International Symposium on Sensorless Control for Electrical Drives and Predictive Control of Electrical Drives and Power Electronics (SLED/PRECEDE), 2013, pp. 1-8.
[8] S. Golestan, J. M. Guerrero and J. C. Vasquez, "Single-Phase PLLs: A Review of Recent Advances," IEEE Transactions on Power Electronics, vol. 32, no. 12, pp. 9013-9030, Dec. 2017.
[9] Se-Kyo Chung, "A phase tracking system for three phase utility interface inverters," IEEE Transactions on Power Electronics, vol. 15, no. 3, pp. 431-438, May 2000.
[10] F. Hans, W. Schumacher and L. Harnefors, "Small-Signal Modeling of Three-Phase Synchronous Reference Frame Phase-Locked Loops," IEEE Transactions on Power Electronics, vol. 33, no. 7, pp. 5556-5560, July 2018.
[11] R. E. Cosse, M. D. Alford, M. Hajiaghajani and E. R. Hamilton, "Fundamentals of Turbine/Generator Speed Control: A Graphical Approach for Islanding Applications," IEEE Industry Applications Magazine, vol. 19, no. 4, pp. 56-62, July-Aug. 2013.
[12] K. De Brabandere, B. Bolsens, J. Van den Keybus, A. Woyte, J. Driesen and R. Belmans, "A Voltage and Frequency Droop Control Method for Parallel Inverters," IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1107-1115, July 2007.
[13] C. Lee, C. Chu and P. Cheng, "A New Droop Control Method for the Autonomous Operation of Distributed Energy Resource Interface Converters," IEEE Transactions on Power Electronics, vol. 28, no. 4, pp. 1980-1993, April 2013.
[14] Z. Peng et al., "Droop Control Strategy Incorporating Coupling Compensation and Virtual Impedance for Microgrid Application," IEEE Transactions on Energy Conversion, vol. 34, no. 1, pp. 277-291, March 2019.
[15] C. Lee, R. Jiang and P. Cheng, "A Grid Synchronization Method for Droop-Controlled Distributed Energy Resource Converters," IEEE Transactions on Industry Applications, vol. 49, no. 2, pp. 954-962, March-April 2013.
[16] P. Poloni, P. T. Godoy, A. B. de Almeida and D. Marujo, "A Phase Angle Synchronization Method for a Microgrid with Diesel Generator and Inverter-Based Sources," 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), 2019, pp. 1-6.
[17] D. Shi et al., "A Distributed Cooperative Control Framework for Synchronized Reconnection of a Multi-Bus Microgrid," IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6646-6655, Nov. 2018.
[18] B. Singh, G. Pathak and B. K. Panigrahi, "Seamless Transfer of Renewable-Based Microgrid Between Utility Grid and Diesel Generator," IEEE Transactions on Power Electronics, vol. 33, no. 10, pp. 8427-8437, Oct. 2018.
[19] Z. Chen, W. Zhang, J. Cai, T. Cai, Z. Xu and N. Yan, "A synchronization control method for micro-grid with droop control," 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 519-524.
[20] Yunwei Li, D. M. Vilathgamuwa and Poh Chiang Loh, "Design, analysis, and real-time testing of a controller for multibus microgrid system," IEEE Transactions on Power Electronics, vol. 19, no. 5, pp. 1195-1204, Sept. 2004.
[21] X. Li, H. Zhang, M. B. Shadmand and R. S. Balog, "Model Predictive Control of a Voltage-Source Inverter With Seamless Transition Between Islanded and Grid-Connected Operations," IEEE Transactions on Industrial Electronics, vol. 64, no. 10, pp. 7906-7918, Oct. 2017.
[22] T. Tran, T. Chun, H. Lee, H. Kim and E. Nho, "PLL-Based Seamless Transfer Control Between Grid-Connected and Islanding Modes in Grid-Connected Inverters," IEEE Transactions on Power Electronics, vol. 29, no. 10, pp. 5218-5228, Oct. 2014.
[23] M. Z. Degefa, J. R. A. Klemets, S. D′Arco, P. C. Sekhar and A. Gupta, "Review of Grid Interconnection Requirements and Synchronization Controllers for Dispersed Minigrids," 2021 IEEE PES/IAS PowerAfrica, 2021, pp. 1-5.
[24] T. L. Vandoorn, B. Meersman, J. D. M. De Kooning and L. Vandevelde, "Transition From Islanded to Grid-Connected Mode of Microgrids With Voltage-Based Droop Control," IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 2545-2553, Aug. 2013.
[25] H. Zhang, S. Kim, Q. Sun and J. Zhou, "Distributed Adaptive Virtual Impedance Control for Accurate Reactive Power Sharing Based on Consensus Control in Microgrids," IEEE Transactions on Smart Grid, vol. 8, no. 4, pp. 1749-1761, July 2017.
[26] Y. Sun, X. Hou, J. Yang, H. Han, M. Su and J. M. Guerrero, "New Perspectives on Droop Control in AC Microgrid," IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5741-5745, July 2017.
[27] C. Li, S. K. Chaudhary, M. Savaghebi, J. C. Vasquez and J. M. Guerrero, "Power Flow Analysis for Low-Voltage AC and DC Microgrids Considering Droop Control and Virtual Impedance," IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2754-2764, Nov. 2017.
[28] P. Li, X. Wang, W. -J. Lee and D. Xu, "Dynamic Power Conditioning Method of Microgrid Via Adaptive Inverse Control," IEEE Transactions on Power Delivery, vol. 30, no. 2, pp. 906-913, April 2015.
[29] Y. Li and Y. W. Li, "Power Management of Inverter Interfaced Autonomous Microgrid Based on Virtual Frequency-Voltage Frame," IEEE Transactions on Smart Grid, vol. 2, no. 1, pp. 30-40, March 2011.
[30] Y. Li and Y. W. Li, "Decoupled power control for an inverter based low voltage microgrid in autonomous operation," 2009 IEEE 6th International Power Electronics and Motion Control Conference, 2009, pp. 2490-2496.
[31] Y. Geng, L. Zhu, X. Song, K. Wang and X. Li, "A Modified Droop Control for Grid-Connected Inverters With Improved Stability in the Fluctuation of Grid Frequency and Voltage Magnitude," IEEE Access, vol. 7, pp. 75658-75669, 2019.
[32] B. Liu, J. Liu, Z. Liu, T. Wu and R. An, "An accurate power control scheme for droop-controlled grid-connected inverters," 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), 2018, pp. 2374-2378.
[33] I. Oraa, J. Samanes, J. Lopez and E. Gubia, "Modeling of a Droop-Controlled Grid-Connected DFIG Wind Turbine," IEEE Access, vol. 10, pp. 6966-6977, 2022.
[34] Y. Deng, Y. Tao, G. Chen, G. Li and X. He, "Enhanced Power Flow Control for Grid-Connected Droop-Controlled Inverters With Improved Stability," IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5919-5929, July 2017.
[35] D. Pan, X. Wang, F. Liu and R. Shi, "Transient Stability Impact of Reactive Power Control on Grid-Connected Converters," 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 2019.
[36] K. Lao, W. Deng, J. Sheng and N. Dai, "PQ-Coupling Strategy for Droop Control in Grid-Connected Capacitive-Coupled Inverter," IEEE Access, vol. 7, pp. 31663-31671, 2019.
[37] Y. P. Li, F. C. Lee and D. Boroyevich, "A simplified three-phase zero-current-transition inverter with three auxiliary switches," IEEE Transactions on Power Electronics, vol. 18, no. 3, pp. 802-813, May 2003.
[38] Hengchun Mao, C. Y. Lee, D. Boroyevich and S. Hiti, "Review of high-performance three-phase power-factor correction circuits," IEEE Transactions on Industrial Electronics, vol. 44, no. 4, pp. 437-446, Aug. 1997.
[39] R. Li and D. Xu, "A Zero-Voltage Switching Three-Phase Inverter," IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1200-1210, March 2014.
[40] R. Li, Z. Ma and D. Xu, "A ZVS Grid-Connected Three-Phase Inverter," IEEE Transactions on Power Electronics, vol. 27, no. 8, pp. 3595-3604, Aug. 2012.
[41] K. Shi, J. Deng and D. Xu, "A General Pulse Width Modulation Method for Zero-Voltage-Switching Active-clamping Three-phase Power Converters: Edge Aligned Pulse Width Modulation (EA-PWM)," IEEE Open Journal of Power Electronics, vol. 1, pp. 250-259, 2020.
[42] Y.-H. Liao, J.-Y. Chen, and Y. Zhou, “A Novel Carrier Scheme Combined with DPWM Technique in a ZVS Grid-Connected Three-Phase Inverter,” Electronics, vol. 11, no. 4, p. 656, Feb. 2022.
[43] A. M. Hava, R. J. Kerkman and T. A. Lipo, "Simple analytical and graphical methods for carrier-based PWM-VSI drives," IEEE Transactions on Power Electronics, vol. 14, no. 1, pp. 49-61, Jan. 1999.
指導教授 廖益弘(Yi-Hung Liao) 審核日期 2022-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明