博碩士論文 109521061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.220.202.229
姓名 葉紹平(Shao-Ping Yeh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用近似最大效率控制於高性能同步磁阻馬達驅動器之發展
(Development of High-Performance Synchronous Reluctance Motor Drive Using Proximate Maximum Efficiency Control)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 為了發展以數位訊號處理器為基礎之高性能同步磁阻馬達驅動器系統,本論文提出一種近似最大效率控制方法。首先先敘述以固定直軸電流命令來驅動同步磁阻馬達之傳統向量控制,然而固定電流命令不適合同步磁阻馬達之高效率應用。有鑑於此,為了改善同步磁阻馬達驅動系統的效率,本文提出了具有三種模式之控制系統,其中包括可調整之轉矩最大變化率控制、有限元素分析之每安培最大轉矩控制以及近似最大效率控制。另外,近似最大效率控制結合了可調整之轉矩最大變化率控制和有限元素分析之每安培最大轉矩控制,因此直軸電流命令可以靈活運用,並能根據使用者的最小化損失目標來做選擇,另一方面為了增加速度控制的強健性,提出了一種具有直軸電流調節之新型適應性計算交軸電流速度控制。最後,在32位元浮點運算數位處理器實施了所提出的三種模式控制系統,並利用Simplorer分析與實驗結果來驗證同步磁阻馬達驅動系統之有效性。
摘要(英) Abstract—To develop a high-performance synchronous reluctance motor (SynRM) drive system, a proximate maximum efficiency (PME) control is proposed in this thesis. First, a SynRM drive based on traditional vector control with a constant d-axis current command is described. Nevertheless, the constant command is not suitable for the high-efficiency applications of SynRM. Therefore, a three-control-mode system including the adjustable maximum rate of change of torque (AMRCT) control, finite element analysis (FEA)-type maximum torque per ampere (MTPA) control, and PME control is proposed to improve the efficiency of SynRM drive system. Moreover, the PME control is a combination of AMRCT control and FEA-type MTPA control. As a result, the d-axis current command is flexible and according to the minimizing loss target chosen by the end-user. Furthermore, a novel adaptive computed q-axis current speed control with d-axis current regulation is proposed to increase the robustness of the speed control. Finally, the proposed three-control-mode system is enforced in a 32-bit floating-point digital signal processor and some simulated and experimental results are provided to verify the effectiveness of the proposed SynRM drive system.
關鍵字(中) ★ 同步磁阻馬達
★ 適應性計算交軸電流速度控制
★ 轉矩最大變化率控制
★ 每安培最大轉矩控制
★ 近似最大效率控制
關鍵字(英) ★ Synchronous reluctance motor (SynRM)
★ adaptive computed q-axis current (ACQC) speed control
★ maximum rate of change of torque (MRCT) control
★ maximum torque per ampere (MTPA) control
★ proximate maximum efficiency (PME) control
論文目次 摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 XII
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 7
1.3 論文貢獻 10
1.4 論文大綱 11
第二章 同步磁阻馬達驅動系統之控制板介紹 12
2.1 前言 12
2.2 TMS320F28075數位訊號處理器簡介 15
2.3 以DSP為基礎的同步磁阻馬達控制驅動系統 17
2.4 TMS320F28075 DSP 控制板與其電路 18
2.5 輸入/輸出板 19
2.6 外部負載控制電路 20
第三章 同步磁阻馬達驅動系統 22
3.1 前言 22
3.2 同步磁阻馬達 24
3.3 同步磁阻馬達的數學動態模型 25
3.4 座標轉換之電壓及磁阻轉矩方程式 27
3.5 馬達對位方法 32
3.5.1 同步磁阻馬達對位方法 32
3.6 同步磁阻馬達控制系統 34
3.6.1 傳統轉矩最大變化率控制 34
3.6.2 三種模式控制系統 43
第四章 適應性計算交軸電流速度控制 45
4.1 前言 45
4.2 適應性計算交軸電流速度控制系統 46
4.2.1 適應性計算交軸電流速度控制 46
4.2.2 適應性計算交軸電流速度控制穩定性證明 48
第五章 同步磁阻馬達近似最大效率控制 49
5.1 簡介 49
5.2 切換式距離法 50
5.3 可調整之轉矩最大變化率控制 52
5.4 有限元素分析之每安培最大轉矩控制 54
5.5 近似最大效率控制 56
第六章 同步磁阻馬達之有限元素分析 57
6.1 簡介 57
6.2 建立同步磁阻馬達有限元素分析模型 58
6.2.1 Maxwell 2D 模型建立同步磁阻馬達 59
6.2.2 ANSYS功能設定 62
6.2.3 同步磁阻馬達飽和現象 66
6.2.4 電感與電流之變化關係 68
6.3 Simplorer模擬分析應用 69
6.3.1 ECE簡介與建模設定 69
6.3.2 Simplorer與ECE設定 73
6.3.3 Simplorer與C語言的聯合分析 74
6.4 三種模式控制系統於Simplorer分析 76
6.4.1 傳統轉矩最大變化率控制於Simplorer分析結果 77
6.4.2 可調整之轉矩最大變化率控制於Simplorer分析結果 78
6.4.3 近似最大效率控制於Simplorer分析結果 80
6.4.4 效率與損失量測於Simplorer分析 82
第七章 三種模式控制系統實驗結果與討論 86
7.1 前言 86
7.2 實驗結果 88
7.2.1 傳統轉矩最大變化率控制 88
7.2.2 可調整之轉矩最大變化率控制 89
7.2.3 近似最大效率控制 91
7.2.4 效率與損失量測 93
7.3 Simplorer分析與實驗結果討論 96
7.3.1 傳統轉矩最大變化率控制Simplorer分析與實驗比較 96
7.3.2 可調整之轉矩最大變化率控制Simplorer分析與實驗比較97
7.3.3 近似最大效率控制Simplorer分析與實驗比較 98
7.3.4 效率與損失Simplorer分析與實驗比較 99
7.4 實驗結果討論 101
第八章 結論與未來展望 110
8.1 結論 110
8.2 未來展望 111
參考文獻 112
作者簡歷 125
參考文獻 [1] P. Waide and C. U. Brunner, “Energy-Efficiency policy opportunities for electric motor-drive systems, ” Paris, France: International Energy Agency, 2011.
[2] Robles, Endika, et al. “Advanced power inverter topologies and modulation techniques for common-mode voltage elimination in electric motor drive systems.” Renewable and Sustainable Energy Reviews140 (2021): 110746.
[3] 黃雅琪,「永磁與磁阻馬達市場發展機會與挑戰」,機械工業雜誌,415期,2017年10月號。
[4] A. T. D. Almeida, “Electric motors and variable speed drives efficiency adjusting MEPS to technology developments,” Motor Summit Zurich, 11/12, Oct. 2016.
[5] Machinies, IS Rotating Electrical. Efficiency classes of line operated AC motors (IE code). IEC Std, 30-1.
[6] M. Doppelbauer, “Update on IEC motor and converter standards,” 6th Int. Motor Summit for Energy Efficiency powered by Impact Energy, Oct. 2016.
[7] S. S. Maroufian and P. Pillay, “Torque characterization of a synchronous reluctance machine using an analytical model, ” IEEE Trans. Transport. Electrificn., vol. 4, no. 2, pp. 506-516, Jun. 2018.
[8] E. F. Yassin, H. M. Yassin, A. Hemeida and M. M. Hallouda, “Real time simulation of brushless doubly fed reluctance generator driven wind turbine considering iron saturation,” IEEE Access, vol. 10, pp. 9925-9934, 2022.
[9] N. F. Jurca, R. A. Inţe, D. C. Popa, B. Vărăticeanu, P. Minciunescu and C. Marţiş, “Electromagnetic and mechanical analysis of a modular outer rotor synchronous reluctance machine for light propulsion vehicles, ” IEEE Trans. Transport. Electrific., vol. 7, no. 4, pp. 2798-2811, Dec. 2021.
[10] H. H. Safa and H. A. Zarchi, “A nonlinear model for the rapid prediction of the magnetic field in eccentric synchronous reluctance machines, ” IEEE Trans. Transport. Electrific., vol. 7, no. 3, pp. 1370-1378, Sept. 2021.
[11] F. P. Scalcon et al., “Robust control of synchronous reluctance motors by means of linear matrix inequalities, ” IEEE Trans. Energy Convers., vol. 36, no. 2, pp. 779-788, Jun. 2021.
[12] L. Aarniovuori et al., “Application of calorimetric method for loss measurement of a SynRM drive system, ” IEEE Trans. Ind. Electron., vol. 63, no. 4, pp. 2005-2015, Apr. 2016.
[13] J. Li and K. Wang, “A novel spoke-type PM machine employing asymmetric modular consequent-pole rotor, ” IEEE/ASME Trans. Mechatronics, vol. 24, no. 5, pp. 2182-2192, Oct. 2019.
[14] “ABB SynRM motor & drive package – Super premium efficiency for HVAC application,” 8th edition of the european hpc infrastructure workshop, Mar. 2017.
[15] F. N. Isaac, A. A. Arkadan and A. El-Antably, “Characterization of axially 171 laminated anisotropic-rotor synchronous reluctance motors,” IEEE Trans. Energy Convers., vol. 14, no. 3, pp. 506-611, Sep 1999.
[16] J. Kolehainen, “Synchronous reluctance motor with form blocked rotor,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 450-456, Jun. 2010.
[17] S. Bolognani, L. Peretti, and M. Zigliotto, “Online MTPA control strategy for DTC synchronous-reluctance-motor drives,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 20–28, Jan. 2011.
[18] I. Boldea, L. N. Tutelea and A. A. Popa, “Reluctance synchronous and flux-modulation machines designs: recent progress, ” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 10, no. 2, pp. 1683-1702, April 2022.
[19] S. Cai, Jianxin. Shen, H. Hao, and M. Jin, “Design methods of transversally laminated synchronous reluctance mechines,” CES Trans. Electrical Machines and Systems, vol. 1, no. 2, pp. 164-173, 2017.
[20] C. Oprea, A. Dziechciarz, and C. Martis, “Comparative analysis of different synchronous reluctance motor topologies,” Proc. 2015 IEEE 15th Int. Conf. Environment and Electrical Engineering (EEEIC), Rome, Italy, 2015, pp. 1904–1909.
[21] A. Yousefi-Talouki, P. Pescetto, G. Pellegrino, and I. Boldea, “Combined active flux and high-frequency injection methods for sensorless direct-flux vector control of synchronous reluctance machines,” IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2447–2457, Mar. 2018.
[22] A. Varshney, U. Sharma, and B.Singh, “Adaptive d-Axis current control of RSyM for photovoltaic water pumping incorporating cross saturation,” IEEE Trans Ind. Informat., vol. 16, no. 10, pp. 6487–6498, Jan. 2020
[23] D. Wang, K. Lu, and P. O. Rasmussen, “Improved closed-loop flux observer based sensorless control against system oscillation for synchronous reluctance machine drives,” IEEE Trans. Power Electron., vol 34, no. 5, pp.4593-4602, May 2019.
[24] K. B. Tawfiq, M. N. Ibrahim, E. E. EL-Kholy, and P. Sergeant, “Performance analysis of a rewound multiphase synchronous reluctance machine,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 10, no 1, pp. 297-309, Feb. 2022.
[25] X. Zhang and G. H. B. Foo, “A robust field-weakening algorithm based on duty ratio regulation for direct torque controlled synchronous reluctance motor,” IEEE/ASME Trans. Mechatronics, vol. 21, no. 2, pp. 765–773, Apr. 2016.
[26] K. B. Tawfiq, M. N. Ibrahim and P. Sergeant, “An enhanced fault-tolerant control of a five-phase synchronous reluctance motor fed from a three-to-five-phase matrix converter,” IEEE Trans. Emerg. Sel. Topics Power Electron., to be published, 2022.
[27] F. Fernandez-Bernal, A. Garcia-Cerrada, and R. Faure, “Efficient control of reluctance synchronous machines,” in Proc. 24th Annu. Conf. IEEE Ind. Electron. Soc., vol. 2, pp. 923–928, Aug./Sep. 1998.
[28] M. P. Kazmierkowski, R. Krishnan, and F. Blaabjerg, Control in Power Electronics-Selected Problems. New York, NY, USA: Academic, 2002.
[29] H. A. Zarchi, J. Soltani, and G. A. Markadeh, “Adaptive input-output feedback linearization-based torque control of synchronous reluctance motor without mechanical sensor,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 375–384, Jan. 2010.
[30] C. Lai, G. Feng, K. Mukherjee, J. Tjong, and N. Kar, “Maximum torque per ampere control for IPMSM using gradient descent algorithm based on measured speed harmonics,” IEEE Trans Ind. Informat., vol. 14, no. 4, pp. 1424–1435, Apr. 2018.
[31] G. Feng, C. Lai, Y. Han, and N. Kar, “Fast maximum torque per ampere (MTPA) angle detection for interior PMSMs using online polynomial curve fitting,” IEEE Trans. Power Electron., vol 37, no. 2, pp. 2045-2056, Feb. 2022..
[32] A. Yousefi-Talouki, P. Pescetto, and G. Pellegrino, “Sensorless direct flux vector control of synchronous reluctance motors including standstill, MTPA, and flux weakening,” IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3598–3608, Jul./Aug. 2017.
[33] A. Consoli, G. Scarcella, G. Scelba, and A. Testa, “Steady-State and transient operation of IPMSMs under maximum-torque-per-ampere control,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 121–129, Jan./Feb. 2010.
[34] F. J. Lin, M. S. Huang, S. G. Chen, C. W. Hsu, and C. H. Liang, “Adaptive backstepping control for synchronous reluctance motor based on intelligent current angle control,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7465–7479, Jul. 2020.
[35] H. E. Khatib, M. Peña, B. Grothmann, E. Gedlu, and M. Saur, “Flux observer-based MTPF/MTPV-operation with low parameter sensitivity applying deadbeat-direct torque and flux control,” IEEE Trans. Ind. Appl., vol. 57, no. 3, pp. 2494–2504, May/Jun. 2021.
[36] A. Dianov, F. Tinazzi, S. Calligaro, and S. Bolognani, “Review and classification of MTPA control algorithms for synchronous motors,” IEEE Trans. Power Electron., vol 37, no. 4, pp.3990-4007, Apr. 2022.
[37] A. Balamurali, G. Feng, C. Lai, J. Tjong, and N. Kar, “Maximum efficiency control of PMSM drives considering system losses using gradient descent algorithm based on DC power measurement,” IEEE Trans. Energy Convers., vol. 33, no. 4, pp. 2240–2249, Dec. 2018.
[38] M. Li, S. Huang, X. Wu, K. Liu, X. Peng, and G. Liang, “A virtual HF signal injection based maximum efficiency per ampere tracking control for IPMSM drive,” IEEE Trans. Power Electron., vol. 35, no. 6, pp. 6102-6113, Jun. 2020.
[39] M. N. Uddin and J. Khastoo, “Fuzzy logic-based efficiency optimization and high dynamic performance of IPMSM drive system in both transient and steady-state conditions,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 4251–4259, Nov./Dec. 2014.
[40] A. Balamurali, G. Feng, A. Kundu, H. Dhulipati, and N. Kar, “Noninvasive and improved torque and efficiency calculation toward current advance angle determination for maximum efficiency control of PMSM,” IEEE Trans. Transport. Electrific., vol. 6, no. 1, pp. 28-40, Mar. 2020.
[41] A. Credo, L. D. Leonardo, F. P. Collazzo, and M. Tursini, “The impact of the control strategy in flux observer based sensorless control of synchronous reluctance motors,” IEEE Access, vol. 9, pp. 156380-156391, 2021.
[42] G. V. Kumar, C. H. Chuang, M. Z. Lu, and C. M. Liaw, “Development of an electric vehicle synchronous reluctance motor drive,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5012–5024, May 2020.
[43] S. G. Chen, F. J. Lin, C. H. Liang, and C. H. Liao, “Development of FW and MTPV control for SynRM via feedforward voltage angle control,” IEEE/ASME Trans. Mechatronics, vol. 26, no. 6, pp. 3254-3264, Dec. 2021.
[44] R. Ni, D. Xu, G. Wang, L. Ding, G. Zhang, and L. Qu, “Maximum efficiency per ampere control of permanent-magnet synchronous machines,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2135–2143, Apr. 2015.
[45] A. Taheri, A. Rahmati, and S. Kaboli, “Efficiency improvement in DTC of six-phase induction machine by adaptive gradient descent of flux,” IEEE Trans. Power Electron., vol 27, no. 3, pp. 1552-1562, Mar. 2012.
[46] J. Hang, H. Wu, S, Ding, Y. Huang, and W. Hua, “Improved loss minimization control for IPMSM using equivalent conversion method,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 1931–1940, Feb. 2021.
[47] F. J. Lin, M. S. Huang, S. G. Chen, and C. W. Hsu, “Intelligent maximum torque per ampere tracking control of synchronous reluctance motor using recurrent Legendre fuzzy neural network,” IEEE Trans. Power Electron., vol. 34, no. 12, pp. 12080–12094, Dec. 2019.
[48] S. G. Chen, F. J. Lin, C. H. Liang, and C. H. Liao, “Intelligent maximum power factor searching control using recurrent Chebyshev fuzzy neural network current angle controller for SynRM drive system,” IEEE Trans. Power Electron., vol. 36, no. 3, pp. 3496–3511, Mar. 2021.
[49] TMS320F2807x Microcontrollers Technical Ref Manual, Texas Instruments.
[50] 黃泰寅,“新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發”,碩士論文,國立中央大學電機系,民國一百零六年。
[51] TMS320F2807x Piccolo Microcontrollers Datasheet, Texas Instruments.
[52] 許哲瑋,“同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制”,碩士論文,國立中央大學電機系,民國一百零八年。
[53] 吳長恩,“具寬速度控制範圍之同步磁阻馬達驅動器研製”,碩士論文, 國立台北科技大學電機工程系,民國一百零五年。
[54] Bimal K. Bose, “Modern Power Electronics and AC Drives” Oct. 2001.
[55] Z. Haisen, L. Xiaofang, H. Jia, and L. Yingli, “The influence of wye and delta connection on induction motor losses taking slot opening and skew effect into account,” Proc. IEEE International Electric Machines and Drives Conference, May 2009.
[56] P. Pillay, R. G. Haarley, and E. J. Odendal, “A comparison between star and delta connected induction motors when supplied by current source inverters,” Electric Power Systems Research., vol. 8, no. 1, pp. 41–51, Oct. 1984.
[57] Z. Haisen, L. Xiaofang, H. Jia, and L. Yingli, “The influence of wye and delta connection on induction motor losses taking slot opening and skew effect into account,” Proc. IEEE International Electric Machines and Drives Conference, May 2009.
[58] M. Y. Wei and T. H. Liu, “Design and implementation of an online tuning adaptive controller for synchronous reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3644– 3657, Sep. 2013.
[59] S. Foti et al, “Rotor position error compensation in sensorless synchronous reluctance motor drives,” IEEE Trans. Power Electron., vol 37, no. 4, pp.4442-4452, Apr. 2022.
[60] H. Parveen, U. Sharma, and B. Singh, “Battery supported solar water pumping system with adaptive feed-forward current estimation,” IEEE Trans. Energy Convers., to be published, 2022.
[61] E. Daryabeigi, A. Mirzaei, H. A. Zarchi, and S. Vaez-Zadeh, “Enhanced emotional and speed deviation control of synchronous reluctance motor drives,” IEEE Trans. Energy Convers., vol. 34, no. 2, pp. 604–612, Jun. 2019.
[62] R. Thike and P. Pillay, “Automated current control method for flux-linkage measurement of synchronous reluctance machines,” IEEE Trans. Ind. Appl., vol. 56, no. 2, pp. 1464-1474, Mar./Apr. 2020.
[63] S. Yamamoto, H. Hirahara, J. B. Adawey, T. Ara, and K. Matsuse, “Maximum efficiency drives of synchronous reluctance motors by a novel loss minimization controller with inductance estimator,” IEEE Trans. Ind. Appl., vol. 49, no. 6, pp. 2543-2551, Nov./Dec. 2013.
[64] BETZ, R. E. Theoretical aspects of control of synchronous reluctance machines. In: IEE Proceedings B (Electric Power Applications). IET Digital Library, pp. 355-364, 1992.
[65] M. Y. Wei and T. H. Liu, “A high-performance sensorless position control system of a synchronous reluctance motor using dual current slope estimating technique,” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3411–3426, Sep. 2012.
[66] Z. Qu, R. A. Hull, and J. Wang, “Globally Stabilizing Adaptive Control Design for Nonlinearly-Parameterized Systems,” IEEE Trans. Autom. Control., vol. 51, no. 6, pp. 1073–1079, Jun. 2006.
[67] Y. A. I. Mohamed and Tsing K. Lee, “Adaptive self-tuning MTPA vector 176 controller for IPMSM drive system,” IEEE Trans. Energy Convers, vol. 21, no. 3, pp. 636–644, Sep. 2006.
[68] 陳世剛,“利用函數連結放射狀基底函數網路於適應性步階迴歸控制六相永磁同步馬達定位驅動系統”,碩士論文,國立中央大學電機系,民國一百零五年。
[69] 陳世剛, “高性能同步磁阻馬達驅動系統之寬速度範圍控制器發展”,博士論文,國立中央大學電機系,民國一百零九年。
[70] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[71] F. J. Lin, S. G. Chen, M. S. Huang, C. H. Liang, and C. H. Liao, “Adaptive complementary sliding mode control for synchronous reluctance motor with direct-axis current control,” IEEE Trans. Ind. Electron., vol. 69, no. 1, pp. 141–150, Jan. 2022.
[72] K. Shao, J. Zheng, R. Tang, X. Li, Z. Man, and B. Liang, “Barrier function based adaptive sliding mode control for uncertain systems with input saturation,” IEEE/ASME Trans. Mechatronics, to be published, 2022.
[73] S. Y. Chen, H. H. Chiang, T. S. Liu, and C. H. Chang, “Precision motion control of permanent magnet linear synchronous motors using adaptive fuzzy fractional-order sliding-mode control,” IEEE/ASME Trans. Mechatronics, vol. 24, no. 2, pp.741–752, Apr. 2019.
[74] S. Y. Chen and Z. Y. Shen, “Synchronous position control of gantry table using adaptive fraction-order dynamic surface control with dendritic neuron model,” IEEE/ASME Trans. Mechatronics, to be published, 2022.
[75] B. J. Choi, S. W. Kwak, and B. K. Kim, “Design and stability analysis of single-input fuzzy logic controller,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 30, no. 2, pp. 303–309, Apr. 2000.
[76] J. Hu and B. Wu, “New integration algorithms for estimating motor flux over a wide speed range,” IEEE Trans. Power Electron., vol. 13, no. 5, pp. 969–977, Sep. 1998.
[77] BETZ, R. E., et al. “Aspects of the control of synchronous reluctance machines including saturation and iron losses,” In: Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting. IEEE, 1992. p. 456-463.
[78] 梁家輝, “利用適應性互補式滑動摩態控制於同步磁阻馬達之寬速度控制” ,民國一百零九年。
[79] ANSYS, Module 01: Basics Introduction to ANSYS maxwell, ANSYS, Inc, 2016.
[80] ZEKIC, Josip. Modeling and analysis of SynRM for hybrid electric vehicle application. 2016. Master′s Thesis.
[81] J. Wei, J. Chen, P. Liu and B. Zhou, “The optimized triloop control strategy of integrated motor-drive and battery-charging system Based on the split-field-winding doubly salient electromagnetic machine in driving mode,” IEEE Trans. Ind. Electron., vol. 68, no. 2, pp. 1769-1779, Feb. 2021.
[82] P. Kumar N. and T. B. Isha, “FEM based electromagnetic signature analysis of winding inter-turn short-circuit fault in inverter fed induction motor,” CES Trans. Electr. Mach. Syst., vol. 3, no. 3, pp. 309-315, Sept. 2019.
[83] A. K. Singh, P. Kumar, C. U. Reddy and K. Prabhakar, “Simulation of direct torque control of induction motor using Simulink, simplorer and maxwell software,” 2015 IEEE International Transport. Electrific. Conference (ITEC), pp. 1-6, 2015.
[84] M. Jafarboland, M. Tashakorian and A. Shirzadi, “Simulation of electrical motor drive using simulink, simplorer and maxwell software,” 2014 22nd Iranian Conference on Electrical Engineering (ICEE), pp. 808-813, 2014.
[85] Alan Chen, “Introduction of ECE model in maxwell reduce order model generation for PMSM,” Mar. 2018.
[86] A. Rihar, P. Zajec and D. Vončina, “Cosimulation of ansys simplerer and MATLAB/Simulink,” 2017 19th International Conference on Electrical Drives and Power Electronics (EDPE), pp. 313-317, 2017.
[87] L. Di Leonardo, M. Popescu, M. Tursini and M. Villani, “Finite elements model co-simulation of an induction motor drive for traction application,” IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, pp. 1059-1065, 2019.
[88] K. Sun, H. Torresan and T. Summers, “Modelling and control of multi-phase PMSM in ANSYS and PLECS,” 2021 31st Australasian Universities Power Engineering Conference (AUPEC), pp. 1-6, 2021.
[89] H. H. Bao, W. Zhang, Y. Yang , and Y. Chen, “Calculation and analysis of IGBT power loss in drive system for EV,” IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), pp. 276-277, Nov. 2015.
[90] Z. Peng, L. Chai , and Y. Sheng, “Co-simulation modeling and fault diagnosis of closed-loop squirrel-cage motor systems,” 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 718-722, Jun. 2017.
[91] J. Rengifo, F. Vaca and J. M. Aller, "Instantaneous input impedance method for PMSM parameter estimation,” 2020 IEEE International Conference on Industrial Technology (ICIT), pp. 205-210 , Feb. 2020.
[92] D. S. Yuan, S. H. Wang, H. L. Li, H. J. Zhang and X. Tao, “Study on engineering design and simulation method of phase-shifting reactor,” 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), pp. 372-373, Nov. 2015.
[93] N. Praveen Kumar and T. B. Isha, “Application of empirical wavelet transform for analyzing inter-turn fault in FEM based closed loop speed controlled induction motor,” 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 1-6, Dec. 2020.
[94] KLEE. Harold, ALLEN. Randal, Simulation of dynamic systems with MATLAB® and Simulink®. Crc Press, 2018.
[95] G. Zhang, and J. Furusho, “Speed Control of two-inertia system by PI/PID control,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 603-609, Jun. 2000.
[96] P. Zhen and B. Chao. “A position sensorless closed-loop control mode of a three-phase hybrid stepper motor,” Energies, 2022.
[97] M. D. Nardo, G. L. Calzo, M. Galea, and C. Gerada, “Design optimization of a high-speed synchronous reluctance machine,” IEEE Trans. Ind. Appl., vol. 54, no. 1, pp. 233–243, Jan./Feb. 2018.
[98] C. T. Liu, B. Y. Chang, K. Y. Hung, and S. Y. Lin, “Cutting and punching impacts on laminated electromagnetic steels to the designs and operations of synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3515–3520, Jul./Aug. 2015.
[99] K. Yahia, D. Matos, J. O. Estima and A. J. M. Cardoso, “Modeling synchronous reluctance motors including saturation, iron losses and mechanical losses,” 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 601-606, Jun. 2014.
[100] M. S. Islam, I. Husain, A. Ahmed, and A. Sathyan, “Asymmetric bar winding for high-speed traction electric machines,” IEEE Trans. Transport. Electrific., vol. 6, no. 1, pp. 3-15, Mar. 2020.
指導教授 林法正(Faa-Jeng Lin) 審核日期 2022-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明