參考文獻 |
[1] A. T. D. Almeida, F. J. T. E. Ferreira and A. Q. Duarte, “Technical and Economical Considerations on Super High-Efficiency Three-Phase Motors,” IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 1274-1285, Apr. 2014.
[2] A. T. D. Almeida, F. J. T. E. Ferreira and G. Baoming, “Beyond Induction Motors Technology Trend to Move up Efficiency,” IEEE Trans. Ind. Appl., vol. 50, no. 3, pp. 2103-2114, May. 2014.
[3] A. Komura, Hitachi, "Development of IES High Efficiency Motor with Iron-base Amorphous Magnetic Cores," 2015. [Online]. Available: http://docplayer.net/52943274-Development-of-ie5-high-efficiency-motor-with-iron-base-amorphous-magnetic-cores.html
[4] Drive and control, "Siemens Enters the Synchronous Reluctance Fray." 2015. [Online]. Available:
https://drivesncontrols.com/news/fullstory.php/aid/4735/Siemens_enters the_synchronous_reluctance fray.html
[5] ABB, "Synchronous Reluctance Motor-drive Package for Machine Builders," 2014. [Online].
Available: https://search.abb.com/library/Download.aspx?DocumentID=3AUA0000120962&LanguageCode=en&DocumentPartId=1&Action=Launch
[6] G. Pellegrino, A. Vagati and P. Guglielmi, "Design Tradeoffs between Constant Power Speed Range, Uncontrolled Generator Operation, and Rated Current of IPM Motor Drives," IEEE Trans. Ind. Appl., vol. 47, no. 5, pp. 1995-2003, Oct. 2011.
[7] P. Niazi, H. A. Toliyat, Dal-Ho Cheong and Jung-Chul Kim, "a Low-cost and Efficient Permanent Magnet Assisted Synchronous Reluctance Motor Drive," in Proc. IEEE Int. Conf. Electr. Mach. Drives, San Antonio, Texas, USA, pp. 659-666, 2005.
[8] H. Cai, B. Guan and L. Xu, "Low-Cost Ferrite PM-Assisted Synchronous Reluctance Machine for Electric Vehicles," IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5741- 5748, 2014.
[9] R. Vartanian, H. A. Toliyat, B. Akin and R. Poley, "Power Factor Improvement of Synchronous Reluctance Motors (SynRM) Using Permanent Magnets for Drive Size Reduction," in Proc. 2012 Twenty-Seventh Annu. IEEE Appl. Power Electron. Conf. Expo. (APEC), Orlando, Florida, USA, pp. 628-633, 2012.
[10] EMACH, Ultra Premium Efficiency (IE5) PM-assisted Synchronous Reluctance Motors," [Online]. Available: http://emach.ru/ieS-pm-assisted/
[11] R. Vartanian, Y. Deshpande and H. A. Toliyat, "Performance Analysis of a Ferrite Based Fractional Horsepower Permanent Magnet Assisted SynM for Fan and Pump Applications," in Proc. 2013 Int. Electr. Mach. Drives Conf., Chicago, Illinois, USA, pp. 1405-1410, 2013.
[12] S. Taghavi and P. Pillay, "A Sizing Methodology of the Synchronous Reluctance Motor for Traction Applications," IEEE J. Emerging Sel. Top. Power Electron., vol. 2, no. 2, pp. 329-340, June 2014.
[13] H. Mahmoud and N. Bianchi, "Eccentricity in Synchronous Reluctance Motors -Part I: Analytical and Finite-Element Models," IEEE Trans. Energy Convers., vol. 30, no. 2, pp. 745-753, June 2015.
[14] H. Mahmoud and N. Bianchi, "Eccentricity in Synchronous Reluctance Motors-_Part II: Different Rotor Geometry and Stator Windings, " IEEE Trans. Energy Convers., vol. 30, no. 2, pp. 754-760, June 2015.
[15] Z. Zhang, R. Ma, L. Wang, and J. Zhang, “Novel PMSM control for anti-lock braking considering transmission properties of the electric vehicle, ” IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 10378-10386, Nov. 2018.
[16] Z. Qiu, Y. Chen, Y. Kang, X. Liu, and F. Gu, “Investigation into periodic signal-based dithering modulations for suppression sideband vibro-acoustics in PMSM used by electric vehicles, ” IEEE Trans. Energy Convers, vol. 36, no. 3, pp. 1787-1796, Sep. 2021.
[17] S. Sriprang, B. Nahid-Mobarakeh, S. Pierfederici, N. Takorabet, N. Bizon , P.Kumam, P. Mungporn, and P. Thounthong, “Robust flatness control with extended Luenberger observer for PMSM drive, ” Proc. IEEE Transp. Electrific. Conf. Expo, Asia–Pacific, pp. 1–8, Jun. 2018.
[18] I. Boldea, L. Tutelea, and C. I. Pitic, “PM-assisted reluctance synchronous motor/generator (PM-RSM) for mild hybrid vehicles: Electromagnetic design,” IEEE Trans. Ind. Appl., vol. 40, no. 2, pp. 492–498, Mar.–Apr. 2004.
[19] S. Sriprang, B. Nahid-Mobarakeh, N. Takorabet, S. Pierfederici, P. Mungporn, P. Thounthong, N. Bizon, P.Kumam, and Z. Shah, “Maximum torque per ampere and field-weakening controls for the high-speed operation of permanent-magnet assisted synchronous reluctance motors,” In 2019 Research, Invention, and Innovation Congress (RI2C), pp. 1-7, 2005.
[20] J.-H. Lee, Y.-J. Jang, and J.-P. Hong, “Characteristic analysis of permanent magnet-assisted synchronous reluctance motor for high power application,” J. Appl. Phys., vol. 97, no. 10, pp. 10Q503-10Q503-3, May 2005.
[21] B. Kerdsup, N. Takorabet, and B. Nahidmobarakeh, “Design of permanent magnet-assisted synchronous reluctance motors with maximum efficiency-power factor and torque per cost,” 2018 XIII International Conference on Electrical Machines (ICEM), 2018.
[22] D.-H. Jung, Y. Kwak, J. Lee, and C.-S. Jin, “Study on the optimal design of PMa-SynRM loading ratio for achievement of ultra premium efficiency,” IEEE Trans. Magn., vol. 53, no. 6, pp. 1–4, Jun. 2017.
[23] F.-J. Lin, Y.-C. Hung, J.-M. Chen, and C.-M. Yeh, “Sensorless IPMSM drive system using saliency back-EMF based intelligent torque observer with MTPA control,” IEEE Trans. Ind Informat, vol. 10, no. 2, pp. 1226-1241, May 2014.
[24] T.-H. Liu, Y. Chen, M.-J. Wu, and B.-C. Dai, “Adaptive controller for an MTPA IPMSM drive system without using a high-frequency sinusoidal generator,” IET J. Eng., vol. 2017, no. 2, pp. 13–25, Feb. 2017.
[25] T. Sun, J. Wang, and X. Chen, “Maximum torque per ampere (MTPA) control for interior permanent magnet synchronous machine drives based on virtual signal injection,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 5036–5045, Sep. 2015.
[26] A. Dianov, A. Anuchin, and A. Bodrov, “Robust MTPA control for steady state operation of low-cost IPMSM drives,” IEEE J. Emerg. Sel. Top. Ind. Electron., early accessed, 2021.
[27] F.-J. Lin, Y.-H. Liao, J.-R. Lin, and W.-T. Lin, “Interior permanent magnet synchronous motor drive system with machine learning-based maximum torque per ampere and flux-weakening control,” Energies, vol. 14, no. 2, Jan. 2021.
[28] Y. I. Nadjai, H. Ahmed, N. Takorabet, and P. Haghgooei, “maximum torque per ampere control of permanent magnet assisted synchronous reluctance motor: an experimental study,” Int. J. Robot. Control Syst., vol. 1, no. 4, pp. 416–427, Jul. 2021.
[29] P. Niazi, H. A. Toliyat, and A. Goodarzi, “Robust maximum torque per ampere (MTPA) control of PM-assisted SynRM for traction application,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1538–1545, Jul. 2007.
[30] F.-J. Lin and R.-J. Wai, “A hybrid computed torque controller using fuzzy neural network for motor-quick-return servo mechanism,” IEEE/ASME Trans. Mechatron., vol. 6, no. 1, pp. 75-89, Mar. 2001.
[31] F.-J. Lin and R.-J. Wai, “Hybrid computed torque controlled motor-toggle servomechanism using fuzzy neural network uncertainty observer,” Neurocomputing, vol. 48, pp. 403-422, 2002.
[32] J. C. Patra and C. Bornand, “Nonlinear dynamic system identification using Legendre neural network,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Barcelona, Spain, pp. 1–7, 2010.
[33] D. M. Sahoo, and S. Chakraverty, “Functional link neural network learning for response prediction of tall shear buildings with respect to earthquake data,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 1, pp. 1–10, Jan. 2018.
[34] C.-H. Lin, “Novel adaptive modified recurrent Legendre neural network control for a PMSM servo-driven electric scooter with V-belt continuously variable transmission system dynamics,” Trans. Inst Meas. Control, vol. 37, no. 10, pp. 1181–1196, Nov, 2015.
[35] D. Chakraborty, and N. R. Pal, “Integrated feature analysis and fuzzy rule-based system identification in a neuro-fuzzy paradigm,” IEEE Trans. Syst. Man Cybern. B, vol. 31, no. 3, pp. 391–400, Jun. 2001.
[36] Y.-Y. Lin, J.-Y. Chang, and C.-T. Lin, “Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 2, pp. 310–321, Feb. 2013.
[37] C.-H. Chen, C.-J. Lin, and C.-T. Lin, “A functional-link-based neuro-fuzzy network for nonlinear system control,” IEEE Trans. Fuzzy Syst., vol. 16, no. 5, pp. 1362–1378, Oct. 2008.
[38] F.-J. Lin, I.-F. Sun, K.-J. Yang, and J.-K. Chang, “Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive,” IEEE Trans. Fuzzy Syst., vol. 24, no. 1, pp. 153–167, Feb. 2016.
[39] 陳世剛,“利用函數連結放射狀基底函數網路於適應性步階迴歸控制六相永磁同步馬達定位驅動系統”,碩士論文,國立中央大學電機系,民國一百零五年。
[40] 黃泰寅,“新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發”
碩士論文,國立中央大學電機系,民國一百零六年。
[41] TMS320F2807x Piccolo Microcontrollers Datasheet, Texas Instruments.
[42] Z. Chen, D. Boroyevich, P. Mattavelli and K. Ngo, "A frequency-domain study on the effect of DC-link decoupling capacitors," 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, pp. 1886-1893, 2013.
[43] 劉昌煥,「交流電機控制」,東華書局,民國92年。
[44] 高子胤,「以反電動勢為基礎之比例積分微分類神經網路估測器之無感測器變頻壓縮機驅動系統開發」,中央大學電機工程系,碩士論文,民國100年7月。
[45] 陳家銘,「以單一直流鏈電流感測器結合低轉速轉矩補償之無轉軸位置感測器變頻壓縮機驅動系統開發」,中央大學電機工程系,碩士論文,民國102年6月。
[46] Keysight 35670A, datasheet.
[47] Z. Chen, M. Tomita, S. Ichikawa, S. Doki, and S. Okuma, “Sensorless control of interior permanent magnet synchronous motor by estimator of an extented electromotive force,” Proc. IECON 2000, pp. 1814-1819, 2000.
[48] 吳長恩,「具寬速度控制範圍之同步磁阻馬達驅動器研製」,國立台北科技大學,碩士論文,民國105年7月。
[49] F.-J. Lin, Y.-T. Liu and W.-A. Yu, “Power perturbation based MTPA with an online tuning speed controller for an IPMSM drive system,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 3677–3687, May 2018.
[50] D. L. Logan, A First Course in the Finite Element Method, MA: Cengage Learning, 2017.
[51] A. Karvonen and T. Thiringer, ”Co-simulation and harmonic analysis of a hybrid vehicle traction system, ” 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), 2015.
[52] J. Wei, J. Chen, P. Liu and B. Zhou, “The optimized triloop control strategy of integrated motor-drive and battery-charging system Based on the split-field-winding doubly salient electromagnetic machine in driving mode, “IEEE Trans. Ind. Electron., vol. 68, no. 2, pp. 1769-1779, Feb. 2021.
[53] P. Kumar N. and T. B. Isha, “FEM based electromagnetic signature analysis of winding inter-turn short-circuit fault in inverter fed induction motor, “CES Trans. Electr. Mach. Syst., vol. 3, no. 3, pp. 309-315, Sept. 2019.
[54] A. K. Singh, P. Kumar, C. U. Reddy and K. Prabhakar, “Simulation of direct torque control of induction motor using Simulink, simplorer and maxwell software, “ 2015 IEEE International Transport. Electrific. Conference (ITEC), pp. 1-6, 2015.
[55] M. Jafarboland, M. Tashakorian and A. Shirzadi, “Simulation of electrical motor drive using simulink, simplorer and maxwell software, “ 2014 22nd Iranian Conference on Electrical Engineering (ICEE), pp. 808-813, 2014.
[56] Alan Chen, “Introduction of ECE model in maxwell reduce order model generation for PMSM,” Mar. 2018.
[57] F. J. Lin, S. G. Chen, and C. W. Hsu, “Intelligent backstepping control using recurrent feature selection fuzzy neural network for synchronous reluctance motor position servo drive system,” IEEE Trans. Fuzzy Syst., vol. 27, no. 3, pp. 413–427, Mar. 2019.
[58] F. J. Lin, I F. Sun, K. J. Yang, and J. K. Chang, “Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive,” IEEE Trans. Fuzzy Syst., vol. 24, no. 1, pp. 153–167, Feb. 2016.
[59] T. H. Liu, H. T. Pu, and C. K. Lin, “Implementation of an adaptive position control system of a permanent-magnet synchronous motor and its application,” IET Elect. Power Appl., vol. 4, no. 2, pp. 121–130, Feb. 2010.
[60] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991. |