博碩士論文 108521076 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:18.226.226.221
姓名 鄒榕(Jung Chou)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 微波及毫米波瓦特級低損耗高隔離度切換器及X頻段四相位鎖相迴路之研製
(Design of Microwave/Millimeter-Wave Watt-Level Low-Loss High-Isolation Switches and X-Band Quadrature Phase-Locked Loop)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 本論文主要研究微波及毫米波瓦特級切換器及X頻段鎖相迴路。切換器為無線射頻收發機系統中重要的電路,隨著第五代通訊的到來,無線通訊頻率的提升使傳輸損耗也跟著加大。現階段功率放大器已成為熱門的研究項目,但是鮮有瓦特級的高功率切換器以承接功率放大器與天線,因此本論文第二及三章主要研究功率提升之切換器。同時第五代通訊的高頻寬且高速資料傳輸等優勢也顯現出來,其中本地振盪源作為系統中升降頻的角色十分重要,因此本論文第四章主要研究低功耗、低相位雜訊之四相位鎖相迴路。
第一章為論文的緒論。第二章為使用穩懋0.15 μm GaAs-PIN二極體製程,實作共計6顆5及28 GHz的單刀單擲與單刀雙擲串並式切換器與4顆28 GHz的四分之波長並式切換器。由於隨著輸入功率的提升,會導致二極體導通造成插入損耗的提升,因此提出反接串聯架構,利用其反接的特性有效抑制二極體的導通,從而提升切換器的功率乘載能力。同時由於三五族製程背向通口的寄生電感,本章提出電容共振架構以消除其寄生效應,使切換器的隔離度在不影響其他切換器性能的情況下有效的提升。本章比較多種提出的切換器架構與傳統架構,並成功實現輸入1 dB壓縮點大於35 dBm、插入損耗小於1 dB且隔離度大於27.4 dB的高功率低損耗高隔離度切換器。
第三章為行波切換器的設計,利用被動元件等效成傳輸線以縮小面積並保留其傳輸線的特性,達到高頻寬低損耗之特性。本章使用台積電0.18 μm CMOS、穩懋0.15 μm GaN和穩懋0.15 μm GaAs-PIN二極體製程,實作共計12顆各種架構之行波切換器做比較,分別為傳統架構、二極體連接行式、閘極至源極和汲極二極體、反接串聯二極體、電容共振及反接串聯二極體電容共振之切換器。比較多種提出的行波切換器架構與傳統架構,並成功實現輸入1 dB壓縮點大於35 dBm、損耗小於1.7 dB且隔離度大於18.8 dB的高功率切換器。
第四章為X頻段四相位鎖相迴路,使用台積電0.18 μm CMOS設計並實現。鎖相迴路包含變壓器耦合壓控振盪器、相位頻率偵測器、電荷幫浦、迴路濾波器、兩級電流模式除頻器及四級單相位時序除頻器。由於此電路有迴路振盪之現象,需透過外接濾波器使其成功鎖定頻率。變壓器耦合壓控振盪器可調頻率範圍為9.33 GHz至10.1 GHz,輸出功率約為-4 dBm,而鎖相迴路鎖定頻率範圍為9.44 GHz至9.48 GHz,相位雜訊在1 MHz頻率偏移時為-105.1 dBc/Hz,電路直流總功耗為39.8 mW。
最後於第五章總結本篇論文所提出之電路與未來研究方向。
摘要(英) This thesis mainly studies microwave and millimeter-wave watt-level switches and an X-band quadrature phase-locked loop (QPLL). The Switches are an important part of the wireless radio frequency (RF) transceiver system. Due to the fifth-generation dynamic communication (5G), the frequency is getting higher, and the greater transmission loss. Power Amplifiers (PA) have become popular research at this stage, but there are few watt-level high-power switches to undertake power amplifiers and antennas. Chapter two and chapter three of this thesis focus on boosting the power-handling of the switches. At the same time, the advantages including wide band and high-speed of the fifth-generation dynamic communication have also emerged. Among them, the local oscillator (LO) is very important as the role of upconvert and downconvert in the system. Chapter four focuses on the low power consumption and low phase noise quadrature phase-locked loop.
The first chapter is the introduction of the thesis. In chapter two, six chips of 5 and 28 GHz single-pole single-throw (SPST) and single-pole double-throw (SPDT) switches series-shunt switches and four chips of 1/4λ transmission line shunt switches using 0.15-μm GaAs-PIN diode process provided by WIN Semiconductors corporation. As the input signal power increase, the diodes will be turned on and the insertion loss will also increase. This thesis proposes the Anti-Series diode structure, to suppress the diode conduction by the Anti-diode feature. Thereby improving the power handling of the switches. Due to the parasitic inductance of the back-via in GaAs, this chapter proposes the resonance-capacitance structure to eliminate this parasitic effect. The isolation of the switches can be improved without affecting the other performance of the switches. This chapter compares various proposed structure switches with conventional switches and successfully implements high-power low-loss high-isolation switches. With insertion loss less than 1 dB, IP1dB greater than 35 dBm, and isolation greater than 27.4 dB.
The third chapter is the design of traveling-wave switches, which uses passive components to be equivalent to the transmission line. To reduce the area and retain the characteristics of transmission lines, and achieve the characteristics of high-frequency bandwidth and low insertion loss. This chapter uses TSMC 0.18 μm CMOS, WIN 0.15 μm GaN, and WIN 0.15 μm GaAs PIN-diode processes to implement a total of 12 traveling-wave switches of various structures for comparison. The switch structures include conventional, drain-gate diode-connection, drain-source diode-connection, anti-series diode, resonance-capacitance, and resonance-capacitance anti-series diode. Compare with conventional and various proposed structures of traveling-wave switches, and successfully implements high-power switches. With insertion loss less than 1.7 dB, IP1dB greater than 35 dBm, and isolation greater than 18.8 dB.
In chapter four, design of an X-band quadrature phase-locked loop using TSMC 0.18 μm CMOS. The phase-locked loop includes a transformer-coupled voltage-controlled oscillator (VCO), a phase and frequency detector (PFD), a charge pump (CP), a loop low-pass filter (LPF), two-stage of current mode logic (CML), and four-stage of true single-phase clocking divider (TSPC). Due to the loop being unstable, an external filter is required. The transformer-coupled voltage-controlled oscillator covered from 9.33 GHz to 10.1 GHz, output power has -4 dBm. The quadrature phase-locked loop covered from 9.44 GHz to 9.48 GHz, achieving -105.1 dBc-Hz phase noise at 1 MHz, and the power consumption is 39.8 mW.
In the final chapter, conclusions and future works are presented.
關鍵字(中) ★ 切換器
★ 鎖相迴路
關鍵字(英) ★ Switch
★ PLL
論文目次 摘要 ii
Abstract iv
目錄 viii
圖目錄 xi
表目錄 xxi
第一章、 緒論 1
1.1 研究動機及背景 1
1.2 相關研究發展 2
1.3 論文貢獻 3
1.4 論文架構 4
第二章、 串並式與四分之波長切換器 5
2.1簡介 5
2.2 PIN 5 GHz串並式開關切換器 6
2.2.1 PIN 5 GHz串並式開關切換器 8
2.2.2 PIN 5 GHz反接二極體串並式開關切換器 13
2.2.3 電路模擬量測與比較分析 20
2.3 PIN 28 GHz串並式單刀單擲開關切換器 30
2.3.1 PIN 28 GHz串並式單刀單擲開關切換器 30
2.3.2 PIN 28 GHz串並式單刀單擲開關切換器 34
2.4 PIN 28 GHz四分之波長開關切換器 38
2.4.1 PIN 28 GHz四分之波長單刀雙擲開關切換器 40
2.4.2 PIN 28 GHz反接串聯二極體四分之波長單刀雙擲開關切換器 43
2.4.3 PIN 28 GHz電容共振四分之波長單刀雙擲開關切換器 47
2.4.4 PIN 28 GHz 反接串聯二極體電容共振四分之波長單刀雙擲開關切換器 54
2.5 比較與結論 59
第三章、 行波單刀單擲與單刀雙擲切換器 62
3.1簡介 62
3.2 台積電0.18 μm CMOS 行波單刀單擲切換器 63
3.2.1 T18行波單刀單擲切換器電路設計與分析 65
3.2.2 T18 二極體連接形式之單刀單擲切換器電路設計與分析 68
3.2.3 電路模擬量測與比較分析 72
3.3 穩懋0.15 μm GaN行波單刀雙擲開關切換器 79
3.3.1 GaN15 行波單刀雙擲開關切換器 79
3.3.2 GaN15 閘極至源極和汲極二極體行波單刀雙擲開關切換器 83
3.3.3 電路模擬量測與比較分析 88
3.4 穩懋0.15 μm PIN二極體行波開關切換器 96
3.4.1 PIN 行波開關切換器 97
3.4.2 PIN 電容共振行波開關切換器 103
3.4.3 PIN 反接串聯二極體行波開關切換器 107
3.4.4 PIN反接串聯二極體電容共振行波開關切換器 111
3.4.5 電路模擬量測與比較分析 116
3.5比較與結論 129
第四章、 四相位鎖相迴路 131
4.1簡介 131
4.2 變壓器耦合壓控振盪器 132
4.3四相位鎖相迴路電路設計 139
4.3.1 除頻器 CML /TSPC 140
4.3.2 相位頻率偵測器與電荷幫浦 145
4.3.3 迴路濾波器與迴路穩定分析[67] 149
4.3.4 四相位鎖相迴路系統模擬與分析 153
4.4 X頻段四相位鎖相迴路量測 157
4.5 X頻段四相位鎖相迴路除錯 166
4.6 結論 173
第五章、 結論 175
參考文獻 177
參考文獻 [1] Chaojiang Li, Berktug Ustundag, Arvind Kumar, Myra Boenke, Umut Kodak, and Gabriel Rebeiz, “<0.8dB IL 46dBm OIP3 Ka band SPDT for 5G communication,” in 2018 IEEE Silicon Monolithic Integr. Circuits in RF Systems (SiRF), 2018, pp. 1-3.
[2] H. Wang, K.-Y. Lin, Z.-M. Tsai, L.-H. Lu, H.-C. Lu, C.-H. Wang, J.-H. Tsai, T.-W. Huang, and Y.-C. Lin, “MMICs in the millimeter-wave regime,” IEEE Microw. Magazine, vol.1, pp. 99–117, Feb. 2009.
[3] A. G. Roy, O. Inac, A.j Singh, T. Mukatel, O. Brandelstein, T. W. Brown, S. Abughazaleh, J. S. Hayden III, B. Park, G. Bachmanek, T.-Y. J. Kao, J. Hagn, S. Dalmia, D. Shoham, B. Davis, I. Fisher, R. Sover, A. Freiman, B. Xiao, B. Singh, and J. Jensen, “A 37-40 GHz phased array front-end with dual polarization for 5G MIMO beamforming applications,” in 2019 IEEE Radio Freq. Integr. Circuits Symp. (RFIC), 2019, pp. 251-254.
[4] A. Colquhoun and L. P. Schmidt, “MMICs for automotive and traffic applications,” in GaAs IC Symp. Tech. Dig., 1992, pp. 3-6.
[5] T. Buber, F. Kolak, N. Kinayman and J. Bennett, “A low-loss high-isolation absorptive GaAs SPDT PIN switch for 24 GHz automotive applications,” in Radio and Wireless Conf., Boston, MA, 2003, pp. 349-352.
[6] J.-E. Mueller, A. Bangert et.al., “A GaAs HEMT MMIC chip set for automotive radar systems fabricated by optical stepper lithography,” IEEE J. Solid-State Circuits, vol. 32, no. 9, pp. 1342-1349, Sept. 1997.
[7] J. Putnam, M. Fukuda, P. Staecker, Y-H. Yun, “A 94 GHz monolithic switch with a vertical PIN diode structure”, in 1994 IEEE GaAs IC Symp., 1994, pp. 333-336.
[8] 林祥,「微波多相位時脈產生器與PIN 二極體應用於毫米波切換器及調變器」,國立中央大學,碩士論文,民國106年。
[9] 王詠樂,線性度改善之微波及毫米波二極體切換器與混波器之研製,國立中央大學電機工程研究所碩士論文,民國 109 年。
[10] K.-Y. Lin, W.-H. Tu, P.-Y. Chen, H.-Y. Chang, H. Wang, and R.-B. Wu, “Millimeter-wave MMIC passive HEMT switches using travelingwave concept,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 8, pp. 1798–1808, Aug. 2004.
[11] H.-Y. Chang, and C.-Y. Chan, “A low loss high isolation DC-60 GHz SPDT traveling-wave switch with a body bias technique in 90 nm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 02, pp. 82-84, Feb. 2010.
[12] C. K. Lin, W. K. Wang, Y. J. Chan, and H. K. Chiou, ‘BCB-bridge distributed wideband SPST switch using 0.25-μm In0.5Al0.5As-In0.5Ga0.5As metamorphic HEMTs,’’ IEEE Trans Electron Devices, vol. 52, no. 1, pp. 1-5, Jan 2005.
[13] J. G. Yang and K. Yang, “Broadband InGaAs PIN traveling-wave switch using a BCB-based thin-film microstrip line structure,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 10, pp. 647-649, Oct. 2009.
[14] N. Billström, J. Nilsson, A. Tengs and N. Rorsman, ‘‘High performance GaN front-end MMICs,’’ in 2011 6th Euro. Microw. Integr. Circuit Conf., Manchester, 2011, pp. 348-351.
[15] Y. Gong, J. W. Teng, and J. D. Cressler, ‘‘A compact, high-power, 60 GHz SPDT switch using shunt-series SiGe PIN diodes,’’ in 2019 IEEE Radio Freq. Integr. Circuits Symp., pp. 15-18.
[16] H. E. Liu, X. Lin, H. Y. Chang, and Y. C. Wang, ‘’10-MHz-to-70-GHz ultra-wideband low-insertion-loss SPST and SPDT switches using GaAs PIN diode MMIC process,’’ in 2018 IEEE Asia-Pacific Microw. Conf., 2018, pp. 1217-1219.
[17] J. G. Yang and K. Yang, “High-linearity K-Band absorptive-type MMIC switch using GaN PIN-diodes,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 1, pp. 37-39, Jan. 2013.
[18] P. Song, R. L. Schmid, Ahmet Çağrı Ulusoy, J. D. Cressler, “A high-power, low-loss W-band SPDT switch using SiGe PIN diodes,” in 2014 IEEE Radio Freq. Int. Circuits Symp., 2014, pp. 195-198.
[19] Charles F. Campbell, and Deep C. Dumka, “Wideband High Power GaN on SiC SPDT Switch MMICs”, in IEEE/MTT-S Int. Microw. Symp., 2010.
[20] Hao-En Liu, Xiang Lin, Hong-Yeh Chang, and Yu-Chi Wang, “10-MHz-to-70-GHz Ultra-Wideband Low-Insertion-Loss SPST and SPDT Switches using GaAs PIN Diode MMIC Process,” in 2018 Asia Pacific Microw. Conf. Proc., Nov. 2018.
[21] K. Y. Lin, Y. J. Wang, D. C. Niu, and H. Wang, “Millimeter-wave MMIC single-pole–double-throw passive HEMT switches using impedance transformation networks,” IEEE Trans. Microw. Theory Techn., vol. 51, no. 04, pp. 1076–1085, Apr. 2003.
[22] “IEEE draft standard for local and metropolitan area networks - specific requirements - Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications - amendment 3: enhancements for very high throughput in the 60 GHz band,” IEEE P802.11ad/D6.0, March 2012 (Draft Amendment based on IEEE P802.11REVmb D12.0), vol., no., pp.1-696, 17 March 2012.
[23] S.-J. Li, H.-H. Hsieh, and L.-H. Lu, “A 10 GHz phase-locked loop with a compact low-pass filter in 0.18 μm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 10, pp. 659–661, Oct. 2009.
[24] Y.-H., Lin, J.-H. Tsai, Y.-H. Kuo, and T.-W. Huang, “An ultra low-power 24 GHz phase-lock-loop with low phase-noise VCO embedded in 0.18 μm CMOS process,” in 2011 IEEE Asia Pacific Microw. Conf. Proc., Dec. 2011, pp. 1630–1633.
[25] M. Huang, C.-H. Yu, J.-H. Tsai, and T.-W. Huang, “A low-power 24 GHz phase lock loop with gain-boosted charge pump embedded in 0.18 µm COMS technology,” in 2012 IEEE Asia Pacific Microw. Conf. Proc., Dec. 2012, pp. 643–645.
[26] A. Li, S. Zheng, J. Yin, X. Luo, and H. C. Luong, “A 21–48 GHz subharmonic injection-locked fractional-N frequency synthesizer for multiband point-to-point backhaul communications,” IEEE J. Solid-State Circuits, vol. 49, no. 8, pp. 1785–1799, Aug. 2014.
[27] H. Xu and K.K. O., “A 31.3 dBm bulk CMOS T/R switch using stacked transistors with sub-design-rule channel length in floated p-wells,” IEEE J. Solid-State Circuits, vol. 38, pp. 1927–1941, July 2007.
[28] Minsik Ahn, Hyun-Woong Kim, Chang-Ho Lee, Joy Laskar, “A 1.8-GHz 33-dBm P 0.1-dB CMOS T/R Switch using stacked FETs with feed-forward capacitors in a floated well structure”, IEEE Trans. Microw. Theory Techn., vol. 57, no. 11, pp. 2661-2670, 2009.
[29] Yalin Hin, and Cam Nguyen, “Ultra-Compact High-Linearity High-Power Fully Integrated DC-20-GHz 0.18-μm CMOS T/R Switch,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 1, pp. 30–36, Jan. 2007.
[30] X. Y. Zhang, J.-X. Xu, and J.-X. Chen, “High-power filtering switch with low loss and high isolation based on dielectric resonator,” IEEE Trans. Microw. Theory Tech., vol. 65, no. 6, pp. 2101–2110, Jun. 2017.
[31] Skyworks Solutions, Inc. SKY13348-374LF: 0.5 to 6.0 GHz SPDT Switch, 50Ω Terminated Datasheet, accessed on Nov. 11, 2013. [Online]. Available: https://www.skyworksinc.com/-/media/SkyWorks/Documents/Products/501-600/SKY13348_374LF_201214F.pdf
[32] RF Micro Devices, Inc. RFSW8000: 2.5V to 5.0V, 5MHz to 6500MHz 10W SPDT Switch Datasheet, accessed on Oct. 2015. [Online]. Available: http://www.rfmd.com/store/ downloads/ dl/file/id/27614/RFSW8000DS.pdf
[33] C. M. Hu et al., “Design of an RF transmit/receive switch using LDMOSFETs with high power capability and low insertion loss,” IEEE Trans. Electron Devices, vol. 58, no. 6, pp. 1722–1727, Jun. 2011.
[34] C.-S. Chen and Y.-S. Lin, “Single-pole double-throw switchable diplexer and single-pole quadruple-throw switchable quadplexer using capacitively loaded multi-coupled line,” Microw., Antennas Propag., vol. 9, no. 14, pp. 1547–1557, Nov. 2015.
[35] C.-S. Chen, J.-F. Wu, Y.-S. Lin, “Compact single-pole-double-throw switchable bandpass filter based on multi-coupled line,” IEEE Microw. Wireless Compon. Lett., 2014, 24, (2), pp. 87–89
[36] N. Billström, J. Nilsson, A. Tengs and N. Rorsman, ‘‘High performance GaN front-end MMICs,’’ in 2011 6th Euro. Microw. Int. Circuit Conf., Manchester, 2011, pp. 348-351.
[37] Y. Gong, J. W. Teng, and J. D. Cressler, ‘‘A compact, high-power, 60 GHz SPDT switch using shunt-series SiGe PIN diodes,’’ in 2019 IEEE Radio Freq. Int. Circuits Sym., pp. 15-18.
[38] J. G. Yang and K. Yang, “High-linearity K-Band absorptive-type MMIC switch using GaN PIN-diodes,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 1, pp. 37-39, Jan. 2013.
[39] Fabian Thome, Peter Br¨uckner, R¨udiger Quay, and Oliver Ambacher, “Millimeter-Wave Single-Pole Double-Throw Switches Based on a 100-nm Gate-Length AlGaN/GaN-HEMT Technology, ” in IEEE/MTT-S Int. Microw. Symp., 2019.
[40] Minsik Ahn, Hyun-Woong Kim, Chang-Ho Lee, Joy Laskar, “A 1.8-GHz 33-dBm P 0.1-dB CMOS T/R Switch using stacked FETs with feed-forward capacitors in a floated well structure”, IEEE Trans. Microw. Theory Techn., vol. 57, no. 11, pp. 2661-2670, 2009.
[41] Xi Fu, Yun Wang, Zheng Li, Atsushi Shirane, and Kenichi Okada, “A 68-dB Isolation 1.0-dB Loss Compact CMOS SPDT RF Switch Utilizing Switched Resonance Network”, in IEEE/MTT-S Int. Microw. Symp., 2020.
[42] Tanjil Shivan, Maruf Hossain, Ralf Doerner, Tom Johansen, Ksenia Nosaeva, Hady Yacoub, Wolfgang Heinrich, and Viktor Krozer, “A High-Isolation and Highly Linear Super-Wideband SPDT Switch in InP DHBT Technology”, in IEEE/MTT-S Int. Microw. Symp., 2020.
[43] Q. Li and Y. -P. Zhang, “CMOS T/R switch design: Towards ultrawideband and higher frequency”, IEEE J.Solid-State Circuits, vol. 42, no. 3, pp. 563-570, Mar. 2007.
[44] Kim Tuyen Trinh, Hsuan-Ling Kao, Hsien-Chin Chiu and Nemai Chandra Karmakar, “A Ka-Band GaAs MMIC Traveling-Wave Switch With Absorptive Characteristic”, IEEE Microw. Wireless Compon. Lett., vol. 29, no. 6, pp. 394-396, Jun. 2019.
[45] Xiao-Lan Tang, Emmanuel Pistono, Philippe Ferrari and Jean-Michel Fournier, “A Traveling-Wave CMOS SPDT Using Slow-Wave Transmission Lines for Millimeter-Wave Application”, IEEE Electron Device Lett., vol. 34, no. 9, pp. 1094-1096, Sep. 2013.
[46] Wen-Chian Lai, Chien-Chang Chou, Shih-Chiao Huang, Tzuen-His Huang and Huey-Ru Chuang, “75-110-GHz W-band High-Linearity Traveling-Wave T/R Switch by Using Negative Gate/Body-Biasing in 90-nm CMOS”, IEEE Microw. Wireless Compon. Lett., vol. 27, no. 5, pp. 488-490, May. 2017.
[47] Wen-Chian Lai and Huey-Ru Chuang, “A 40-110 GHz high-isolation CMOS traveling-wave T/R switch by using parrallel inductor”, in IEEE/MTT-S Int. Microw. Symp., 2015.
[48] Mei-Chao Yeh, Zuo-Min, Kun-You Lin, Huei Wang, Chia-Yi Su and Chih-Ping Chao, “A Millimeter-Wave Wideband SPDT Switch with Traveling-Wave Concept Using 0.13-μm CMOS Process”, in IEEE/MTT-S Int. Microw. Symp., 2005.
[49] Hong-Yeh and Ching-Yah Chan, “A Low Loss High Isolation DC-60 GHz SPDT Traveling-Wave Switch With a Body Bias Technique in 90 nm CMOS Process”, IEEE Microw. Wireless Compon. Lett., vol. 20, no. 2, pp. 82-84, May. 2010.
[50] Guan-Yu Chen, Hong-Yeh Chang, Ching-Yan Chan, Wen-Hua Tu, Chin-Shen Lin, Kevin Chen and Szu-Hsien Wu, “Cold-mode Characteristics of 90 nm CMOS Device with Negative Body Bias and Highly Linear Millimeter-Wave Switch Applications”, in IEEE Asia-Pacific Microw. Comference, 2010.
[51] Jeng-Han Tsai, Chia-Hsiang Chao, and Hung-Da Shih, “A X-band Fully Integrated CMOS Frequency Synthesizer,” in Proc. Asia-Pacific Microw. Conf., Dec. 2012.
[52] 呂冠學,微波及毫米波倍頻器、多相位高功率高效率壓控振盪器及鎖相迴路之研製,國立中央大學電機工程研究所碩士論文,民國 105 年。
[53] J.F Huang, “Chip Design of 10 GHz Low Phase Noise and Small Chip Area PLL,” in IEEE Communications and Networking in China (CHINACOM), Aug. 2013, pp. 276–280.
[54] S.-Y. Yang, W.-Z. Chen, and T.-Y. Lu, “A 7.1 mw, 10 GHz all digital frequency systhesizer with dynamically reconfigured digital loop filter in 90 nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 578–586, Mar. 2010.
[55] Jeng-Han Tsai, Chin-Yi Hsu, and Chia-Hsiang Chao, “An X-Band 9.75/10.6 GHz Low-Power Phase-Locked Loop using 0.18-μm CMOS Technology,” in Proceedings of the 10th Euro. Microw. Integr. Circuits Conf., Sept. 2015.
[56] Keum-Won Ha, Jeong-Yun Lee, Sangyong Park, and Donghyun Baek, “A Dual-mode Signal Generator using PLL for X-band Radar Sensor Applications,” in IEEE Int. Symp. on Radio-Freq. Integr. Technol. (RFIT), Sept. 2017.
[57] Hamed Alsuraisry, Chun-Hin Yim, Jen-Hao Cheng, Jeng-Han Tsai, Tian-Wei Huang, “A X-band frequency synthesizer for FMCW radar in 180-nm CMOS,” in Proc. Asia-Pacific Microw. Conf., Dec. 2015.
[58] 胡瀚中,應用於毫米波高速通訊四相位鎖相迴路及高線性度正交調變鎖頻迴路之研製,國立中央大學電機工程研究所碩士論文,民國 110 年。
[59] C.-C. Li, T.-P. Wang, C.-C. Kuo, M.-C. Chuang, and H. Wang, “A 21 GHz complementary transformer coupled CMOS VCO,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 278-280, Apr. 2008.
[60] Akshay Visweswaran, Robert Bogdan Staszewski, and John R. Long, “A Low Phase Noise Oscillator Principled on Transformer-Coupled Hard Limiting,” IEEE J. Solid-State Circuits, vol. 49, no. 2, pp. 300–311, Feb. 2014
[61] P. Andreani, X. Wang, L. Vandi, and A. Fard, “A study of phase noise in Colpitts and LC-tank CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1107–1118, May 2005.
[62] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, Jun. 1999.
[63] J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18-µm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594–601, Apr. 2004.
[64] Y. Mo, E. Skafidas, R. Evans, and I. Mareels, “Superharmonic injection-locked frequency dividers,” IEEE ICCSC 2008, pp. 812–815.
[65] Z. Deng and A. M. Niknejad, “The speed-power trade-off in the design of CMOS true-single-phase-clock dividers,” IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2457–2465, Nov. 2010.
[66] M. Soyuer and R. G. Meyer, “Frequency limitations of a conventional phase-frequency detector,” IEEE J. Solid-State Circuits, vol. 25, no. 4, pp. 1019–1022, Aug. 1990.
[67] 高深淵和楊清淵,鎖相迴路,蒼海書局,民國100年。
[68] B.-Y. Lin, and S.-I. Liu, “A capacitor cross-coupled common-gate low-noise amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 10, pp. 617–621, Oct. 2011.
[69] K. Tsutsumi et al., “Low phase noise Ku-band PLL-IC with -104.5 dBc/Hz at 10- kHz offset using SiGe HBT ECL PFD,” in Proc. Asia–Pacific Microw. Conf., pp. 373–376, Dec. 2009.
[70] X. Gao, E. A. M. Klumperink, P. F. J. Geraedts, and B. Nauta, “Jitter analysis and a benchmarking figure-of merit for phase-locked loops,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 2, pp. 117–121, Feb. 2009.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2022-8-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明