博碩士論文 108327033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.217.74.111
姓名 蘇奕瑋(Yi-Wei Su)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 應用於波導式擴增實境裝置之擴瞳成像均勻化技術的研究
相關論文
★ 輝度與色彩均勻化之發光二極體直下式背光模組應用設計★ 薄型化LCD直下式背光模組設計
★ 非對稱型光分佈的發光二極體照明裝置之研究★ 應用平行光互連技術於40Gb/s的光收發次模組之封裝技術
★ 大尺寸發光二極體側光式背光模組散熱技術★ 灰化製程對鉻及氧化銦錫接觸阻抗之影響
★ 導光式發光框條的光學設計與驗證★ 直下式LED液晶觸控顯示器之研究
★ 全周光裝飾型LED燈泡之研究★ 卷對卷技術應用於凹形微透鏡膜製造之分析
★ 複合式多波長驗鈔裝置探討★ 液晶顯示器品質提升之研究
★ 在微影製程中旋轉塗佈實驗之正型光阻減量的研究★ 一種應用於特定工程圖表影像的文字智慧辨識與提取之技術研究
★ 寬頻光方向耦合器使用數種權重函數之結構最佳化設計★ 線上近紅外線穿透光檢測系統應用於不織布製程設備之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-30以後開放)
摘要(中) 擴增實境技術中,波導是目前主要被看好的技術,類眼鏡型式的波導裝置,為降低系統與觀看位置相對變化的影響,常採用出瞳擴束技術將擬擴增的影像複製成二維影像群,以增加瞳孔可接收影像範圍。本研究主要針對一種應用於適用於窄波段的波導式擴增實境裝置之出瞳擴束技術進行研究,我們改善一種可調配表面結構的均勻技術,藉此設計與調配此波導元件之耦出位置的繞射功能微結構之形狀與相關配置,以控制每個被複製的影像的相對均勻度,進而實現將原始影像複製成複數個相對均勻的一維影像陣列之目的;在耦入部分,我們主要設計具分束功能的繞射結構與全反射稜鏡結構,將影像複製成三個並列的影像分別傳導,再經由耦出部分相對應被設計之結構陣列,便可耦出二維的相對均勻之影像陣列。我們使用繞射結構設計軟體,搭配一種簡易的優化概念與程式,分別成功地設計綠光、紅光、藍光特定波長的耦出部分之相對應耦出結構陣列的結構,模擬軟體結果分別為:比較耦出的一維影像陣列的光中心光出射度之均勻度可達到約99%、96%、97%;總出光效率達到64.2%、52.9%、58.7%。另外,此調配表面結構的均勻技術,也被考慮應用於原始影像不均的調校技術上,結果顯示,原本均勻度65.3%之類高斯光束,可被調校成均勻光約82.3%的光束。
摘要(英) In the augmented reality technology, waveguide is the main technology that is currently favored. In order to reduce the influence of the relative change between the system and the viewing position, the optical waveguide device is often used to copy the to-be-augmented image into two parts. Dimensional image group to increase the range of images that can be received by the pupil. This research mainly focuses on an exit pupil beam expansion technology applied to a waveguide augmented reality device suitable for narrow wavelength bands. We improve a uniform technology that can adjust the surface structure, so as to design and adjust the coupling and output of the waveguide element. The shape and relative configuration of the diffraction function microstructure at the position control the relative uniformity of each copied image, thereby realizing the purpose of copying the original image into a plurality of relatively uniform one-dimensional image arrays; in the coupling part, We mainly design the diffraction structure and the total reflection structure with beam splitting function, copy the image into three parallel images and transmit them respectively, and then through the coupling part corresponding to the designed structure array, the two-dimensional image can be coupled out. Relatively uniform image array. We used the diffraction structure design software, with a simple optimization concept and program, to successfully design the structure of the out-coupling structure array corresponding to the out-coupling parts of the specific wavelengths of green light, red light, and blue light, respectively. The simulation software results are as follows: Compared with the out-coupled one-dimensional image array, the uniformity of light center light output can reach about 99%, 96%, and 97%; the total light output efficiency can reach 64.2%, 52.9%, and 58.7%. In addition, the uniform technology of adjusting the surface structure is also considered to be applied to the adjustment technology of the original image unevenness. The results show that a Gaussian beam with a uniformity of 65.3% can be adjusted to a beam with a uniformity of about 82.3%.
關鍵字(中) ★ 微結構
★ 表面浮雕
★ 擴增實境
★ 光波導元件
★ 出瞳擴束
關鍵字(英) ★ surface relief
★ augmented reality
★ optical waveguide elements
★ exit pupil expander
論文目次 摘要 I
ABSTRACT II
誌謝 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 研究背景、動機與目的 1
1.2文獻回顧 6
1.2.1 出瞳擴束器 6
1.2.2 光波導技術應用 8
1.3論文架構 10
第二章 結構繞射效率計算及優化方法 13
2.1 結構繞射效率計算方法 13
2.2 調整公式以符合現實需求 15
第三章 結構設計 19
3.1 初步模擬 21
3.2 均勻優化處理 24
3.3 預補償 25
3.4 於耦出部分加入角度參數 29
第四章 高斯光源均勻化 34
4.1 均勻度65.36%之高斯光源 34
4.1.1 光源分區 34
4.1.2 光源手動分區優化(外圍內圈部分) 37
4.1.3 光源手動分區優化(角落部分) 39
4.2 均勻度82.48%之高斯光源 41
4.2.1 光源分區 41
4.2.2 光源手動分區優化(外圍內圈部分) 42
4.2.3 光源手動分區優化(角落部分) 44
第五章 結論與未來展望 46
5.1 結論 46
5.2 未來展望 46
參考文獻 48
參考文獻 [1] Kun Li, “Understanding Waveguide: the Key Technology for Augmented Reality Near-eye Display (Part I).” Source URL: https://virtualrealitypop.com/understanding-waveguide-the-key-technology-for-augmented-reality-near-eye-display-part-i-2b16b61f4bae.
[2] Kun Li, “Understanding Waveguide: the Key Technology for Augmented Reality Near-eye Display (Part II).”
[3] Tao Zhan, Kun Yin, Jianghao Xiong, Ziqian He, and Shin-Tson Wu, “Augmented Reality and Virtual Reality Displays: Perspectives and Challenges,” iScience, 23, 101397(2020).
[4] H. Mukawa. K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A Full Color Eyewear Display using Holographic Planar Waveguides,” SID 08 Digest, 89‐92 (2008).
[5] H. Kikuchi, “Photonics in Sony’s novel display technologies.”
[6] 一文看懂主流AR眼鏡的核心顯示技術光波導(完整篇)檢自https://read01.com/zh-tw/azydDEA.html#.Yqa_bu5BxhE
[7] Urey, H. (2001). Diffractive exit-pupil expander for display applications. Applied Optics, 40(32), 5840-5851.
[8] Urey, H., & Powell, K. D. (2005). Microlens-array-based exit-pupil expander for full-color displays. Applied optics, 44(23), 4930-4936.
[9] Levola, T. (2006). Diffractive optics for virtual reality displays. Journal of the Society for Information Display, 14(5), 467-475.
[10] Kress, B., Raulot, V., & Grossman, M. (2012, May). Exit pupil expander for wearable see-through displays. In Photonic Applications for Aerospace, Transportation, and Harsh Environment III (Vol. 8368, p. 83680D). International Society for Optics and Photonics.
[11] Ye, Y., Pu, D., Zhou, Y., & Chen, L. (2007). Diffraction characteristics of a submicrometer grating for a light guide plate. Applied optics, 46(17), 3396-3399.
[12] Piao, J. A., Li, G., Piao, M. L., & Kim, N. (2013). Full color holographic optical element fabrication for waveguide-type head mounted display using photopolymer. Journal of the Optical Society of Korea, 17(3), 242-248.
[13] Yu, C., Peng, Y., Zhao, Q., Li, H., & Liu, X. (2017). Highly efficient waveguide display with space-variant volume holographic gratings. Applied optics, 56(34), 9390-9397.
[14] McLamb, M., Li, Y., Park, S., Lata, M., & Hofmann, T. (2019, October). Diffraction gratings for uniform light extraction from light guides. In 2019 IEEE 16th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT and AI (HONET-ICT) (pp. 220-222). IEEE.
[15] Xu, M., & Hua, H. (2019). Methods of optimizing and evaluating geometrical lightguides with microstructure mirrors for augmented reality displays. Optics express, 27(4), 5523-5543. Urey, H. (2001). Diffractive exit-pupil expander for display applications. Applied Optics, 40(32), 5840-5851.
[16] Piao, M. L., & Kim, N. (2014). Achieving high levels of color uniformity and optical efficiency for a wedge-shaped waveguide head-mounted display using a photopolymer. Applied optics, 53(10), 2180-2186.
[17] Liu, A., Zhang, Y., Weng, Y., Shen, Z., & Wang, B. (2018). Diffraction efficiency distribution of output grating in holographic waveguide display system. IEEE Photonics Journal, 10(4), 1-10.
[18] Liu, Z., Pang, Y., Pan, C., & Huang, Z. (2017). Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics. Optics Express, 25(24), 30720-30731.
[19] Kogelnik, H. (1995). Coupled wave theory for thick hologram gratings. In Landmark Papers On Photorefractive Nonlinear Optics (pp. 133-171).
[20] Shen, T., Cai, Z., Liu, Y., & Zheng, J. (2019). Switchable pupil expansion propagation using orthogonal superposition varied-line-spacing H-PDLC gratings in a holographic waveguide system. Applied Optics, 58(24), 6622-6628.
[21] Lee, Y. H., Tan, G., Yin, K., Zhan, T., & Wu, S. T. (2018). Compact see‐through near‐eye display with depth adaption. Journal of the Society for Information Display, 26(2), 64-70.
[22] Stevens, A. J., Urey, H., Lopez, P., Saks, T. R., McGuire, R., & Raguin, D. H. (2000, June). Diffractive optical elements for numerical aperture expansion in retinal scanning displays. In Diffractive Optics and Micro-Optics (p. DThC3). Optica Publishing Group.
[23] Feng, D., Jin, G., Yan, Y., & Fan, S. (2004). High quality light guide plates that can control the illumination angle based on microprism structures. Applied physics letters, 85(24), 6016-6018.
[24] Moharam, M. G., Grann, E. B., Pommet, D. A., & Gaylord, T. K. (1995). Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. JOSA a, 12(5), 1068-1076.
[25] Parikka, M., Kaikuranta, T., Laakkonen, P., Lautanen, J., Tervo, J., Honkanen, M., ... & Turunen, J. (2001). Deterministic diffractive diffusers for displays. Applied optics, 40(14), 2239-2246.
[26] Cornelissen, H. J., de Boer, D. K., & Tukker, T. (2013, September). Diffraction gratings for Lighting applications. In LED-based Illumination Systems (Vol. 8835, pp. 97-104). SPIE.
[27] Imai, K., & Fujieda, I. (2008). Illumination uniformity of an edge-lit backlight with emission angle control. Optics express, 16(16), 11969-11974.
[28] Levola, T., & Laakkonen, P. (2007). Replicated slanted gratings with a high refractive index material for in and outcoupling of light. Optics Express, 15(5), 2067-2074.
指導教授 陳奇夆(Qi-Feng Chen) 審核日期 2022-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明