博碩士論文 109521018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.144.202.167
姓名 黃柏燁(Po-Yeh Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 適用於提高自旋轉移力矩式磁阻隨機存取記憶體矩陣可靠度之老化偵測與緩解架構設計
(Aging Detection and Tolerance Framework for Reliability Enhancement in STT-MRAM Array)
相關論文
★ 晶圓圖之網格及稀疏缺陷樣態辨識★ 晶圓圖提取特徵參數錯誤樣態分析
★ 使用聚類過濾策略和 CNN 計算識別晶圓圖瑕疵樣態★ 新建晶圓圖相似性門檻以強化相似程度辨別能力
★ 一個可靠的靜態隨機存取記憶體內運算結構: 設計指南與耐老化策略研究★ 一個高效的老化偵測器部屬策略: 基於生成對抗網路的設計方法
★ 考慮電壓衰退和繞線影響以優化電路時序之電源供應網絡精煉策略★ 8T 靜態隨機存取記憶體之內積運算引擎的老化威脅緩解策略: 從架構及運算角度來提出解決的方法
★ 用於響應穩定性的老化感知平行掃描鏈PUF設計★ 8T靜態隨機存取記憶體運算的老化檢測和容忍機制:適用於邏輯和 MAC 運算的應用
★ 使用擺置後的設計特徵及極限梯度提升演算法預測繞線後的繞線需求
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-15以後開放)
摘要(中) 自旋轉移力矩式磁阻隨機存取記憶體(Spin-Transfer-Torque Magnetic
Random-Access Memory, STT-MRAM)是近幾年最有前途的 on-chip 內建記
憶體之一。然而,STT-MRAM 中的隧道磁阻元件 (Magnetic Tunnel Junction,
MTJ) 存在一些可靠性的威脅,這些威脅會降低其耐用性、產生缺陷並導致
內建記憶體故障。最主要的可靠性問題是來自 MTJ 上的老化效應,也就是
與時間相關的介電層崩潰效應 (Time Dependent Dielectric Breakdown,
TDDB)。此效應會隨著時間去影響 MTJ 的電阻值並且長久下來可能會導
致記憶體資料讀取錯誤。為了克服這一困難,在本篇論文中,我們提出了一
個在線老化偵測和老化補償的架構,透過動態監控電氣參數的偏差並提供
適當的補償以避免讀取錯誤。在線老化偵測機制可以通過偵測讀取電流來
識別老化的資料,然後老化補償機制可以調整讀取放大器的參考電阻,以容
忍 MTJ 老化引起的電阻值下降而發生的資料讀取錯誤。與現有的基於測試
的老化偵測技術相比,我們的機制可以在資料讀取的同時同步在線運行老
化檢測和補償,並且對於性能的影響小到可以忽略。模擬和分析結果表明,
我們所提出的技術可以在考慮製成工藝變化下成功偵測到老化資料,並使
整體 STT-MRAM 的可靠性提高至 25%。
摘要(英) Spin-transfer-torque magnetic random-access memory (STT-MRAM) is one of the most promising emerging memories for on-chip memory. However, the magnetic tunnel junction (MTJ) in the STT-MRAM suffers from several reliability threats which degrade the endurance, create defects, and cause memory failure. One of the primary reliability issues comes from time-dependent dielectric breakdown (TDDB) on MTJ, which deviates resistance value of MTJ over time and may lead to reading error. To overcome this challenge, in this paper we present an on-line aging detection and tolerance framework to dynamically monitor the electrical parameter deviations and provide appropriate compensation to avoid reading error. The on-line aging detection mechanism can identify aged words by monitoring read current and then the aging tolerance mechanism can adjust the reference resistance of the sensing amplifier to compensate the aging-induced
resistance drop of MTJ. In comparison with existing testing-based aging detection techniques, our mechanism can operate on-line with read operations for both aging detection and tolerance simultaneously with negligible performance
overhead. Simulation and analysis results show that the proposed techniques can successfully detect aging words under process variation and achieve at most 25% reliability improvement of STT-MRAMs.
關鍵字(中) ★ 自旋轉移力矩式磁阻隨機存取記憶體
★ 老化偵測
★ 老化補償
★ 與時間相關的介電層崩潰效應
★ 可靠度提升
★ 隧道磁阻元件
關鍵字(英) ★ STT-MRAM
★ Aging Detection
★ Aging Tolerance
★ TDDB
★ Reliability Enhancement
★ MTJ
論文目次 摘要.................................................................................................................i
Abstract...........................................................................................................ii
致謝...............................................................................................................iii
Table of Contents...........................................................................................iv
Table of Figures.............................................................................................vi
Table of Tables.............................................................................................viii
Chapter 1 Introduction................................................................................ 1
1.1 STT-MRAM ..................................................................................... 2
1.2 Reliability Issues of STT-MRAM.................................................... 3
1.3 Previous Works Review ................................................................... 5
1.4 Contributions.................................................................................... 6
Chapter 2 Background................................................................................ 8
2.1 MTJ Basics....................................................................................... 8
2.2 The Operations of STT-MRAM..................................................... 10
2.3 Aging Effects on MTJ .................................................................... 11
2.4 MTJ Defect Model ......................................................................... 13
Chapter 3 Problem Formulation............................................................... 15
Chapter 4 Aging Detection and Tolerance Framework............................ 17
4.1 The Concept Overview................................................................... 17
4.2 Aging Detection Mechanism.......................................................... 20
4.3 Aging Tolerance Mechanism.......................................................... 23
4.4 Look-up Table Design .................................................................... 25
4.5 Look-up Table Implementation...................................................... 26
Chapter 5 Experimental Results............................................................... 29
5.1 Simulation Results of an MTJ........................................................ 29
5.2 Aging Detection Mechanism Validation ........................................ 32
5.3 Aging Tolerance Mechanism Validation ........................................ 33
5.4 Overhead Analysis.......................................................................... 35
Chapter 6 Conclusions.............................................................................. 36
References.................................................................................................... 37
參考文獻 [1] JEDEC Solid State Technology Association, accessed 3 May 2022,
https://www.jedec.org/
[2] Y. Chen, H. H. Li, I. Bayram and E. Eken, "Recent Technology Advances of
Emerging Memories," in IEEE Design & Test, vol. 34, no. 3, pp. 8-22, June
2017.
[3] W. Zhao and G. Prenat, Eds., Spintronics-Based Computing. Berlin, Germany:
Springer, 2015.
[4] G. Radhakrishnan, Y. Yoon and M. Sachdev, "Monitoring Aging Defects in
STT-MRAMs," in IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 12, pp. 4645-4656, Dec. 2020.
[5] W. Zhao et al., “Failure analysis in magnetic tunnel junction nanopillar with
interfacial perpendicular magnetic anisotropy,” Materials, vol. 9, no. 1, p. 41,
2016.
[6] Y. Wang, Y. Zhang, E. Y. Deng, J. O. Klein, L. A. B. Naviner, and W. S. Zhao,
“Compact model of magnetic tunnel junction with stochastic spin transfer
torque switching for reliability analyses,” Microelectron.Rel., vol. 54, nos. 9–
10, pp. 1774–1778, Sep./Oct. 2014.A.
[7] L. Hua et al., “Barrier breakdown mechanism in nano-scale perpendicular
magnetic tunnel junctions with ultrathin MgO barrier,” AIP Adv., vol. 8, no.
5, 2018, Art. no. 055908.
[8] A.V. Khvalkovskiy et al., “Basic principles of STT-MRAM cell operation in
memory arrays,” J. Phys. D: Appl. Phys, vol. 46, 2013
[9] B. Oliver, “Two breakdown mechanisms in ultrathin alumina barrier magnetic
tunnel junctions,” J. Appl. Phys., vol. 95, p. 1315 Jan. 2004.
38
[10] Y. Wang et al., “Compact model of dielectric breakdown in spin-transfer
torque magnetic tunnel junction,” IEEE Trans. Electron Devices, vol. 63, no.
4, pp. 1762–1767, Apr. 2016.
[11] L. Wu et al., "Pinhole Defect Characterization and Fault Modeling for STTMRAM Testing," 2019 IEEE European Test Symposium (ETS), 2019, pp. 1-
6.
[12] C. Ho, G. D. Panagopoulos, S. Y. Kim, Y. Kim, D. Lee and K. Roy, "A
physical model to predict STT-MRAM performance degradation induced by
TDDB," 71st Device Research Conference, 2013, pp. 59-60.
[13] G. Panagopoulos, C. Augustine and K. Roy, "Modeling of dielectric
breakdown-induced time-dependent STT-MRAM performance degradation,"
69th Device Research Conference, 2011, pp. 125-126.
[14] S. Jain, A. Ranjan, K. Roy and A. Raghunathan, "Computing in Memory
With Spin-Transfer Torque Magnetic RAM," in IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 26, no. 3, pp. 470-483, March
2018.
[15] W. Xu, T. Zhang and Y. Chen, "Design of Spin-Torque Transfer
Magnetoresistive RAM and CAM/TCAM with High Sensing and Search
Speed," in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 18, no. 1, pp. 66-74, Jan. 2010.
[16] P. Girard, Y. Cheng, A. Virazel, W. Zhao, R. Bishnoi and M. B. Tahoori, "A
Survey of Test and Reliability Solutions for Magnetic Random Access
Memories," in Proceedings of the IEEE, vol. 109, no. 2, pp. 149-169, Feb.
2021.
指導教授 陳聿廣(Yu-Guang Chen) 審核日期 2022-9-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明