博碩士論文 108521039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.218.129.100
姓名 林郁芊(Yu-Cian Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具自我校正注入時序與脈波寬度技術之多頻率次諧波注入式鎖相迴路
(A Multiple Frequency Sub-harmonically Injection Locked Phase Locked Loop with Self-Calibrated Injection Timing and Pulsewidth Technique)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 本論文提出一個自適應時序及脈波寬度校正技術的次諧波注入式鎖相迴路,且具有多操作頻率的特色,可操作頻率範圍為1.2 GHz – 2.4 GHz,次諧波注入式鎖相迴路具有抑制振盪器產生之高頻相位雜訊的特色,且利用自適應時序及脈波校正的技巧,於不同操作頻率之下仍可固定注入的脈波強度,確保注入式迴路具有相同的相位雜訊抑制效果。注入式鎖相迴路的架構有許多問題可以討論,其影響最為明顯的為注入時序和注入脈波寬度,這些問題會嚴重影響注入式鎖相迴路的操作效能,除了劣化輸出時脈抖動(Jitter)與參考突波(Reference Spur)之外,甚至影響迴路的穩定,因此注入時序校正技術扮演著很重要的角色,需十分重視其中的設計。本研究採用振盪器相位之間固定之相差,自適應調整最佳的注入強度,也透過此技術使此電路可活運用在不同頻率,進一步提升應用範圍。
電路設計與佈局採用90 nm CMOS製程來實現。在供應電壓為1 V的條件下,輸出頻率可以操作於1.2 GHz – 2.4 GHz。完成注入時序與脈波寬度校正後,次諧波注入式鎖相迴路的參考突波與主頻率的能量差為-34 dBc,輸出相位雜訊在1MHz的情況下為-110.7 dBc/Hz,整個電路的功率消耗在最高頻率2.4 GHz為4.04 mW,核心電路面積為0.102 mm2,晶片面積為1.49 mm2。
摘要(英) This thesis proposes a sub-harmonically injection locked phase-locked loop with self-calibrated injection timing and pulsewidth technique, The operating frequency range is 1.2 GHz – 2.4 GHz. The sub-harmonically injection locked phase-locked loop has the ability to suppress the high frequency noise generated by the oscillator. Through the use of self-calibrated injection timing and pulsewidth technique, the injected pulse intensity can still be fixed under different operating frequencies. According to the technique, it ensures that the injection loop has the same phase noise suppression effect. There are many problems in the architecture of the injection locked phase-locked loop that can be discussed. The most obvious impact is the injection timing and the injection pulsewidth. These problems will seriously affect the operation performance of the injection locked phase-locked loop. In addition to deteriorating the output clock jitter and reference spur, it also affects the stability of the loop. Therefore, the technology of injection timing correction needs to be paid high attention to. In this study, the fixed phase difference between the oscillator phases is used to adaptively adjust the optimal injection strength. This technology also enables the circuit to be used in different operation frequency to further enhance the applicability.
This work is fabricated in 90 nm CMOS process, the output frequency range of the sub-harmonically injection phase-locked loop is 1.2 GHz - 2.4 GHz under the condition that the supply voltage is 1V. The measured phase noise at 1 MHz offset -110.7 dBc/Hz, The measured reference spur is -34 dBc. The power consumption of the circuit is 4.04 mW at the highest frequency of 2.4 GHz.
關鍵字(中) ★ 注入式鎖相迴路
★ 自我校正注入時序
關鍵字(英) ★ Sub-harmonically injection-locked PLL
★ self-calibrated injection timing
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第1章 緒論 1
1.1 研究動機 1
1.2 論文架構 2
第2章 次諧波注入式鎖相迴路先前技術探討 3
2.1 鎖相迴路簡介 3
2.2 次諧波注入式鎖定簡介 4
2.2.1 倍頻延遲鎖定迴路(Multiplying Delay-Locked Loop, MDLL) 4
2.2.2 次諧波注入振盪器(Injection-Locked Clock Multiplier, ILCM) 5
2.2.3 次諧波注入式鎖定迴路(Sub-Harmonically Injection-Locked Phase-Locked Loop, SILPLL) 6
2.2.4 相位雜訊分析 7
2.3 注入脈波自我時序校正技術之先前架構 8
2.3.1 注入脈波時序校正技術(一) 9
2.3.2 注入脈波時序校正技術(二) 10
2.3.3 注入脈波時序校正技術(三) 11
2.3.4 注入脈波時序校正技術(四) 12
2.4 比較與討論 12
第3章 具自我校正注入時序與脈波寬度技術之多頻率次諧波注入式鎖相迴路 13
3.1 電路架構與操作 13
3.2 鎖相迴路設計 14
3.3 注入脈波與時序自我校正迴路 15
3.4 校正流程 16
3.5 次諧波注入式鎖相迴路之系統分析 17
第4章 研究架構設計與實現 21
4.1 電路架構 21
4.1.1 相位偵測器 21
4.1.2 電荷幫浦 23
4.1.3 迴路濾波器 25
4.1.4 電壓控制振盪器 25
4.1.5 多模數除頻器 28
4.2 脈波時序及寬度自我校正迴路 29
4.2.1 次取樣Bang-Bang相位偵測器 29
4.2.2 粗調數位控制延遲線 30
4.2.3 細調數位控制延遲線 32
4.2.4 脈波產生器 33
第5章 電路模擬結果 35
5.1 佈局後電路模擬 35
5.1.1 鎖相迴路模擬 35
5.1.2 次諧波注入式鎖像迴路模擬 37
5.2 電路佈局 42
5.3 晶片量測環境考量 46
5.4 規格比較 50
第6章 結論與未來研究方向 52
6.1 結論 52
6.2 未來研究方向 52
參考文獻 53
參考文獻 [1] R. Farjad-Rad et al., “A 0.2-2 GHz 12 mW multiplying DLL for low jitter clock synthesis in highly-integrated data communication chips,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 55–57, Feb. 2002.
[2] S. Ye, L. Jansson, and I. Galton, “A multiple-crystal interface PLL with VCO realignment to reduce phase noise,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1795–1803, Dec. 2002.
[3] J. Lee and H. Wang, “Study of subharmonically injection-locked PLLs,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1539–1553, May 2009.
[4] C.-L. Wei, T.-K. Kuan, and S.-I. Liu, “A Subharmonically Injection-Locked PLL With Calibrated Injection Pulsewidth,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 62, no. 6, pp. 548-552, Jun. 2015.
[5] M. -H. Chou and S. -I. Liu, "A 2.4-GHz Area-Efficient and Fast-Locking Subharmonically Injection-Locked Type-I PLL," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 11, pp. 2474-2478, Nov. 2020.
[6] X. Jin, D. -S. Kang, Y. Ko, K. -W. Kwon and J. -H. Chun, "A 4-GHz Sub-harmonically Injection-Locked Phase-Locked Loop with Self-Calibrated Injection Timing and Pulsewidth," IEEE Journal of Solid-State Circuits, vol. 55, no. 10, pp. 2724-2733, Oct. 2020.
[7] 林則瑋, “具快速次諧波時序自我校正機制之注入鎖定式鎖相迴路,” 碩士論文, 國立中央大學, 2016.
[8] Y.-C. Huang, and S.-I. Liu, “A 2.4-GHz subharmonically injection-locked PLL with self-calibrated injection timing,” IEEE J. Solid-State Circuits, vol. 48, no. 2, pp. 417-428, Feb. 2013.
[9] 徐延慶, “具頻寬校正機制之寬頻三倍頻鎖相迴路設計,” 碩士論文, 國立中央大學, 2016.
[10] Z. Zhang, L. Liu, P. Feng and N. Wu, "A 2.4–3.6-GHz Wideband Subharmonically Injection-Locked PLL With Adaptive Injection Timing Alignment Technique," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 3, pp. 929-941, March 2017.
[11] A. Li, Y. Chao, X. Chen, L. Wu and H. C. Luong, "A Spur-and-Phase-Noise-Filtering Technique for Inductor-Less Fractional-N Injection-Locked PLLs," IEEE Journal of Solid-State Circuits, vol. 52, no. 8, pp. 2128-2140, Aug. 2017.
[12] 王威仁, “具混亂時序注入機制之全數位高除數次諧波注入鎖定式鎖相迴路,” 碩士論文, 國立中央大學, 2015.
[13] C.-F. Liang and K.-J. Hsiao, “An injection-locked ring PLL with self-aligned injection window,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 90–92, Feb. 2011.
[14] A. Musa, W. Deng, T. Siriburanon, M. Miyahara, K. Okada and A. Matsuzawa, "A Compact, Low-Power and Low-Jitter Dual-Loop Injection Locked PLL Using All-Digital PVT Calibration," IEEE Journal of Solid-State Circuits, vol. 49, no. 1, pp. 50-60, Jan. 2014.
[15] B. Razavi, “A Study of Phase Noise in CMOS Oscillator,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 331-343, Dec. 2002.
[16] 高曜煌, 射頻鎖相迴路IC設計, 滄海書局, 2005.
[17] 劉深淵,楊清淵, 鎖相迴路, 滄海書局, 2006.
[18] 邱郁廷, “應用於雙倍資料率同步動態隨機存取記憶體之全數位式延遲鎖定迴路,” 碩士論文, 國立中央大學, 2017.
[19] I-T. Lee, Y.-J. Chen, S.-I. Liu, C.-P. Jou, F.-L. Hsueh, and H.-H. Hsieh, “A Divider-Less Sub-Harmonically Injection-Locked PLL with Self-Adjusted Injection Timing,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 414-415, Feb. 2011.
[20] 涂祐豪, “具寬頻操作與自我相位校正之延遲鎖定迴路與頻率倍頻器,” 碩士論文, 國立中央大學, 2010.
[21] B. Razavi, Design of Analog CMOS Integrated Circuit, New York, McGraw-Hill, 2001.
[22] X. Gao, E. Klumperink, M. Bohsali, and B. Nauta, “A low noise subsampling PLL in which divider noise is eliminated and PD/CP noise is not multiplied by N2,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3253–3263, Dec. 2009.
[23] I-T. Lee, K.-H. Zeng, and S.-I. Liu, “A 4.8-GHz Dividerless Subharmonically Injection-Locked All-Digital PLL With a FOM of -252.5 dB,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 60, no. 9, pp. 547-551, Dec. 2012.
[24] D. Dunwell, and A.-C. Carusone, “Modeling Oscillator Injection Locking Using the Phase Domain Response,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 60, no. 11, pp. 2823-2833, Nov. 2013.
[25] N. Xi, F. Lin and T. Ye, "A Low-Spur and Intrinsically Aligned IL-PLL With Self-Feedback Injection Locked RO and Pseudo-Random Injection Locked Technique," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 4, pp. 1358-1367, April 2020
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2022-9-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明