參考文獻 |
[1] Terzaghi, K., Erdbaumechanik auf bodenphysikalischer Grundlage. 1925: F. Deuticke.
[2] Biot, M.A., General theory of three‐dimensional consolidation. Journal of applied physics, 1941. 12(2): p. 155-164.
[3] Biot, M.A., Theory of elasticity and consolidation for a porous anisotropic solid. Journal of applied physics, 1955. 26(2): p. 182-185.
[4] Biot, M.A. and D.G. Willis, The elastic coefficients of the theory of consolidation. 1957.
[5] Zienkiewicz, O., C. Chang, and P. Bettess, Drained, undrained, consolidating and dynamic behaviour assumptions in soils. Geotechnique, 1980. 30(4): p. 385-395.
[6] Ferronato, M., G. Gambolati, and P. Teatini, Ill-conditioning of finite element poroelasticity equations. International Journal of Solids and Structures, 2001. 38(34-35): p. 5995-6014.
[7] Bergamaschi, L., M. Ferronato, and G. Gambolati, Mixed constraint preconditioners for the iterative solution of FE coupled consolidation equations. Journal of Computational Physics, 2008. 227(23): p. 9885-9897.
[8] Vermeer, P.A. and A. Verruijt, An accuracy condition for consolidation by finite elements. International Journal for Numerical and Analytical Methods in Geomechanics, 1981. 5(1): p. 1-14.
[9] Zienkiewicz, O.C., et al., Static and dynamic behaviour of soils : a rational approach to quantitative solutions. I. Fully saturated problems. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1990. 429(1877): p. 285-309.
[10] Murad, M.A. and A.F.D. Loula, On stability and convergence of finite element approximations of Biot′s consolidation problem. International Journal for Numerical Methods in Engineering, 1994. 37(4): p. 645-667.
[11] Murad, M.A., V. Thomée, and A.F.D. Loula, Asymptotic Behavior of Semidiscrete Finite-Element Approximations of Biot’s Consolidation Problem. SIAM Journal on Numerical Analysis, 1996. 33(3): p. 1065-1083.
[12] Wan, J., et al., Stabilized Finite Element Methods for Coupled Geomechanics - Reservoir Flow Simulations, in SPE Reservoir Simulation Symposium. 2003, Society of Petroleum Engineers: Houston, Texas. p. 11.
[13] Korsawe, J. and G. Starke, A Least-Squares Mixed Finite Element Method for Biot′s Consolidation Problem in Porous Media. SIAM Journal on Numerical Analysis, 2005. 43(1): p. 318-339.
[14] Haga, J.B., H. Osnes, and H.P. Langtangen, On the causes of pressure oscillations in low-permeable and low-compressible porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 2012. 36(12): p. 1507-1522.
[15] Huber, R. and R. Helmig, Node-centered finite volume discretizations for the numerical simulation of multiphase flow in heterogeneous porous media. Computational Geosciences, 2000. 4(2): p. 141-164.
[16] Hurtado, F., et al., A Quadrilateral Element-Based Finite-Volume Formulation for the Simulation of Complex Reservoirs. Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, 2007. 2.
[17] Durlofsky, L.J., Accuracy of mixed and control volume finite element approximations to Darcy velocity and related quantities. Water Resources Research, 1994. 30(4): p. 965-973.
[18] Cumming, B., T. Moroney, and I. Turner, A mass-conservative control volume-finite element method for solving Richards’ equation in heterogeneous porous media. BIT Numerical Mathematics, 2011. 51(4): p. 845-864.
[19] Nick, H.M. and S.K. Matthäi, Comparison of Three FE-FV Numerical Schemes for Single- and Two-Phase Flow Simulation of Fractured Porous Media. Transport in Porous Media, 2011. 90(2): p. 421-444.
[20] Harlow, F.H. and J.E. Welch, Numerical calculation of time‐dependent viscous incompressible flow of fluid with free surface. The physics of fluids, 1965. 8(12): p. 2182-2189.
[21] Lilly, D.K., On the computational stability of numerical solutions of time-dependent non-linear geophysical fluid dynamics problems. Monthly Weather Review, 1965. 93(1): p. 11-25.
[22] Boal, N., et al., Finite-difference analysis of fully dynamic problems for saturated porous media. Journal of Computational and Applied Mathematics, 2011. 236(6): p. 1090-1102.
[23] Sokolova, I., M.G. Bastisya, and H. Hajibeygi, Multiscale finite volume method for finite-volume-based simulation of poroelasticity. Journal of Computational Physics, 2019. 379: p. 309-324.
[24] Kadeethum, T., et al., Enriched Galerkin discretization for modeling poroelasticity and permeability alteration in heterogeneous porous media. Journal of Computational Physics, 2021. 427: p. 110030.
[25] Maliska, C.R., H.T. Honório, and J. Coelho Jr. A non-oscillatory staggered grid algorithm for the pressure-displacement coupling in geomechanics. in IACM 19th international conference in flow problems–FEF. 2017.
[26] Bai, M., D. Elsworth, and J.C. Roegiers, Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs. Water Resources Research, 1993. 29(6): p. 1621-1633.
[27] Tully, B. and Y. Ventikos, Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus. Journal of Fluid Mechanics, 2011. 667: p. 188-215.
[28] Chou, D., Computational modelling of brain transport phenomena: application of multicompartmental poroelasticity. 2016, University of Oxford.
[29] Wang, H.F., Theory of linear poroelasticity with applications to geomechanics and hydrogeology. 2017: Princeton University Press.
[30] Verruijt, A., Theory and problems of poroelasticity. Delft University of Technology, 2013. 71.
[31] Mandel, J., Consolidation des sols (étude mathématique). Geotechnique, 1953. 3(7): p. 287-299.
[32] Abousleiman, Y., et al., Mandel′s problem revisited. Geotechnique, 1996. 46(2): p. 187-195. |