博碩士論文 109323024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:106 、訪客IP:18.223.209.243
姓名 吳家榮(Chia-Jung Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 方形侵入物形狀縱橫比對垂直振動顆粒床內分離現象之影響
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 本研究探討當侵入物(Intruder)質量、體積、密度都相同時,改變方形侵入物縱橫比
並置入類二維垂直振動床中的巴西豆分離現象,且為了捕捉顆粒的即時照片以及分析用
途,架設高速攝影機以及粒子追蹤測速法PTV(Particle Tracking Velocimetry)來進行後續
分析,並探討上升時間以及速度、粒子溫度、擴散係數等顆粒傳輸性質。
在進行一系列的實驗與分析後,改變侵入物的縱橫比確實會影響到顆粒分離行為,
縱橫比較大之侵入物,在上升過程中較為不易,因此上升至自由表面所需時間較長。此
現在也反映在上升速度上,縱橫比越大的侵入物上升速度越慢,這是因為長度較長之侵
入物每振盪一次所產生之底部空間較大,背景顆粒需要往下填補的數量增加,然而縱橫
比越大的侵入物不只會影響底部面積以及顆粒數的多寡,也會使顆粒上下交換運動受到
一定程度的阻礙,就是因為這兩項原因導致了為什麼雖為相同體積密度之侵入物,卻有
著不同的上升行為。同時我們也量測粒子溫度來判斷置入不同侵入物後是否會對系統整
體動能造成影響,結果發現無論是放置何種形狀的侵入物,其整體系統能量並不會因此
而改變。最後,為了能更了解到不同侵入物所帶來之變化,量測侵入物底部的自我擴散
係數,可以發現系統內部所接收之能量雖然相同,但由於侵入物縱橫比的影響,導致每
個縱橫比不同的侵入物底部有不同的流化程度,進而造成彼此間上升時間的差異。
摘要(英) This thesis investigates the phenomenon of brazil nut effect in a quasi-two-dimensional
vertical vibrating bed by changing the aspect ratio of the intruder with the same mass, volume
and density. In order to capture real-time photos of particles and analyze them, a high-speed
camera was set up and use PTV (Particle Tracking Velocimetry) for subsequent analysis, and
the transport properties of particles such as rise time and velocity, granular temperature, and
diffusion coefficient were discussed. After a series of experiments and analysis, changing the
size of intruder will indeed affect the separation behavior. Intruder with longer horizontal
lengths are more difficult to ascend during the process of ascending, so the ascending time is
longer than those with shorter lengths. This value is also reflected in the rising speed. The longer
the intruder are, the slower the rising speed is. Because the bottom space generated by each
oscillation of the longer large particles is larger, and the background particles need to be filled
down to increase the number. Long intruder not only affect the number of particles at the bottom,
but also hinder the exchange movement of particles up and down to a certain extent. It is
because of these two reasons why the particles with the same bulk density have different
ascending behaviors.At the same time, we also measured the particle temperature to determine
whether the placement of different intruder would affect the overall kinetic energy of the system.
It was found that the overall system energy did not change whether long or short intruder were
placed. Finally, in order better understand the changes caused by different intruder, the selfdiffusion
coefficient at the bottom of the intruder was measured. It can be found that although
the energy received inside the system is the same, due to the influence of the size of the intruder,
the Intruder have different degrees of fluidization at the bottom, which in turn cause differences
in rise time between them.
關鍵字(中) ★ 粒子流
★ 振動床
★ 侵入物
★ 巴西豆效應
★ 分離
關鍵字(英) ★ Granular flow
★ Intruder
★ Vibrated bed
★ Brazil nut effect
★ Segregation
論文目次 摘要 .............................................................................................................................................i
Abstract......................................................................................................................................iii
目錄...........................................................................................................................................iv
附圖目錄...................................................................................................................................vi
附表目錄.................................................................................................................................viii
符號說明...................................................................................................................................ix
第一章 簡介............................................................................................................................1
1.1 粒子流簡介.................................................................................................................1
1.2 顆粒體的分離行為.....................................................................................................2
1.3 顆粒體在振動床的行為.............................................................................................3
1.4 研究動機.....................................................................................................................8
第二章 實驗方法....................................................................................................................9
2.1 研究設備.....................................................................................................................9
2.2 研究方法...................................................................................................................12
2.2.1 實驗參數........................................................................................................12
2.2.2 粒子追蹤測速法............................................................................................12
2.2.3 顆粒的傳輸性質影像分析............................................................................13
2.3 自我擴散理論...........................................................................................................14
2.4 顆粒混合指標...........................................................................................................15
2.5 實驗步驟...................................................................................................................16
第三章 結果與討論..............................................................................................................17
3.1 振動床內侵入物上升行為.......................................................................................17
3.1.1 振動床型態探討............................................................................................17
3.1.2 侵入物上升行為探討....................................................................................18
3.2 侵入物縱橫比對顆粒體傳輸現象之影響...............................................................20
3.2.1 侵入物縱橫比對粒子溫度之影響................................................................20
3.2.2 侵入物縱橫比對顆粒擴散之影響................................................................21
3.2.3 侵入物縱橫比對整體系統混合度之影響....................................................23
第四章 結論..........................................................................................................................25
參考文獻..................................................................................................................................54
參考文獻 [1] M. Alonso, M. Satoh, and K. Miyanami, 1991, “Optimum combination of size ratio,
density ratio and concentration to minimize free surface segregation,’’ Powder Technology,
Vol. 68, pp. 145-152.
[2] J. M. N. T. Gray, 2018, “Particle Segregation in Dense Granular Flows,’’ Annual Review
of Fluid Mechanics, Vol. 50, pp. 407-433.
[3] J. J. McCarthy, 2009, “Turning the corner in segregation,’’ Powder Technology, Vol. 192(2),
pp. 137-142.
[4] A. Rosato , K. J. Strandburg , F. Prinz and R. H. Swendsen , 1987, “Why the Brazil nuts
are on top: Size segregation of particulate matter by shaking,’’ Physical Review Letters,
Vol. 58(10), pp. 1038-1040.
[5] S. Matsumura , D. C. Richardson , P. Michel , S. R. Schwartz and R.-L. Ballouz, 2014,
“The Brazil nut effect and its application to asteroids,’’ Monthly Notices of the Royal
Astronomical Society ,Vol. 443(4) , pp. 3368-3380.
[6] V. Perera, Jackson, A. P. Asphaug, E. and R. L. Ballouz, 2016, “The spherical Brazil Nut
Effect and its significance to asteroids,’’ ICARUS, Vol. 278, pp. 194-203.
[7] D. O. Joshi, M. Shimizu and K. Hosoda, 2020, “Intra-swarm migration of size-variable
robotic modules utilizing the Brazil nut effect,” Advanced Robotics, Vol. 34(17), pp. 1122-
1136.
[8] A. Srivastava, K. Kikuchi, and T. Ishikawa, 2021, “Microbial Brazil nut effect,” Soft
Matter, Vol. 17(46), pp. 10428-10436.
[9] B. Ferdowsi, C. P. Ortiz, M. Houssais and D. J. Jerolmack, 2017, “River-bed armouring as
a granular segregation phenomenon,’’ Nature Communications, Vol. 8, pp. 1-10.
[10] T. Shinbrot, F. J. Muzzio, 1998, “Reverse Buoyancy in Shaken Granular Beds,’’ Physical Review Letters, Vol. 81(20), pp. 4365-4368.
[11] H. M. Jaeger, S. R. Nagel, 1992, “Physics of the granular state,” Science, Vol. 255, pp.
1523-1531.
[12] S. S. Hsiau, S. J. Pan, 1998, “Motion state transitions in a vibrated granular bed,’’ Powder
Technology, Vol. 96, pp. 219-226.
[13] C. R. Wassgren, C. E. Brennen, and M. L. Hunt, 1996, “Vertical vibration of a deep bed of
granular material in a container,’’ Journal of Applied Mechanics, Vol. 63, pp. 712-719.
[14] M. Faraday, 1831, “On a peculiar class of acoustical figures; and on certain forms assumed
by groups of particles upon vibrating elastic surfaces,” Philosophical Transactions of the
Royal Society of London, Vol. 121, pp. 299-340.
[15] F. Zhang, L. Wang, C. Liu, P. Wu, and S. Zhan, 2014, “Patterns of convective flow in a
vertically vibrated granular bed,” Physics Letters A, Vol. 378, pp.1303-1308.
[16] S. S. Hsiau, M. H. Wu, and C. H. Chen, 1998, “Arching phenomena in a vibrated granular
bed,” Powder Technology, Vol. 99, pp. 185-193.
[17] S. S. Hsiau, H. Y. Yu, 1997, “Segregation phenomena in a shaker,” Powder Technology,
Vol. 93, pp. 83-88.
[18] A. P. J. Breu, H.-M. Ensner, C. A. Kruelle, and I. Rehberg, 2003, “Reversing the Brazil-
Nut Effect: Competition between Percolation and Condensation,’’ Physical Review Letters,
Vol. 90(1), 014302.
[19] C. C. Liao, S. S. Hsiau and C. S. Wu, 2012, “Experimental study on the effect of surface
roughness of the intruder on the Brazil nut problem in a vertically vibrated bed’’ Physical
Review E, Vol. 86, 061316.
[20] C. C. Liao, 2016, “Multisized immersed granular materials and bumpy base on the Brazil
nut effect in a three-dimensional vertically vibrating granular bed,’’ Powder Technology,
Vol. 208, pp. 151-156.
[21] Y. Nahmad-Molinari, G. Canuul-Chay, and J. C. Ruiz-Suárez, 2003, “ Inertia in the Brazil
nut problem,’’ Physical Review E, Vol. 68, 041301.
[22] D. A. Huerta, J. C. Ruiz-Suárez, 2004, “Vibration-Induced Granular Segregation: A
Phenomenon Driven by Three Mechanisms,” Physical Review Letters, Vol. 92(11), 11301.
[23] D. A. Huerta, Victor Sosa, M. C. Vargas & J. C. Ruiz-Suárez, 2005, “Archimedes’ principle
in fluidized granular systems,” Physical Review E, Vol. 72, 031307.
[24] Y. C. Chung, H. H. Liao, and S. S. Hsiau, 2013, “Convection behavior of non-spherical
particles in a vibrating bed: Discrete element modeling and experimental validation,”
Powder Technology, Vol. 237, pp. 53-66.
[25] B. Chen, P. Wu, H. Xing, H. Liu, L. Li, and L. Wang, 2020, “Convection behavior of
ellipsoidal particles in a quasi-two-dimensional bed under vertical vibration,” Powder
Technology, Vol. 363, pp. 575-583.
[26] J. Qizo, K. Dong, and C. Duan, 2021, “DEM Study on the Segregation of a Non‐Spherical
Intruder in a Vibrated Granular Bed,” Processes, Vol. 9(3), 448.
[27] L. S. Lu, 2006, “Study of granular mixing in virbrated beds and sheard flows by DEM
simulations,” 國立中央大學機械工程研究所博士論文。
[28] T. Firdani, 2021, “Investigation of Intruder Local Buoyancy Segregation Mechanism in a
Vertically Vibrated Granular Bed,” 國立中央大學能源工程研究所碩士論文。
[29] P. M. C. Lacey, 1953, “Developments in the theory of particle mixing,” Journal of Applied
Chemistry, Vol. 4(5), pp. 257-268.
[30] A. Rosato, F. Prinz, and R. H. Swendsen, 1987, “Why the Brazil Nuts Are on Top: Size
Segregation of Particulate Matter by Shaking,” Physical Review Letters, Vol. 58(10), pp.
1038-1040.
[31] M. Bose, M. Rhodes, 2006, “Dynamics of an intruder in a shaken granular bed,” Powder
Technology, Vol. 179(1-2), pp. 25-30.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2022-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明