博碩士論文 109521119 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.223.106.100
姓名 石嘉翔(Jia-Siang Shih)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於毫米波封裝之鎊線分析與設計
(Analysis and Design of Bond Wires for Millimeter-Wave Packaging Applications)
相關論文
★ 基於慢波結構之槽孔天線微型化★ 應用於毫米波封裝之覆晶連結分析與設計
★ 基於類表面電漿之機械可調導波結構於高頻地波雷達之應用★ 用於第五代行動通訊之類表面電漿微型圓極化槽孔天線
★ 一種用於陣列天線場型合成之混合最佳化方法★ 以超表面實現可展開網狀反射面天線之增益改 進
★ 一種基於類表面電漿之高頻地波雷達部署方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-23以後開放)
摘要(中) 本論文分為5章,第一章為緒論。首先我們說明封裝的發展及其重要性,接著分別介紹常見的封裝連接方式(鎊線接合、球柵陣列、覆晶封裝),然後說明鎊線封裝應用在毫米波頻段時,因為其本身帶有低通濾波器的特性,導致鎊線的反射以及傳輸損耗尤其嚴重,若能改善訊號通過鎊線時嚴重惡化的情況,將使鎊線封裝具有應用在毫米波頻段的潛力。
第二章為鎊線封裝的特性探討。首先我們考慮加入封裝材料對以鎊線傳遞訊號的封裝電路造成的影響,並針對低損耗以及高損耗的封裝材料對鎊線電路造成的影響進行模擬分析。然後,為了有效的分析鎊線封裝時的電氣特性,對於鎊線結構提出一基於準靜態的分析方法,建立準確度涵蓋直流到40 GHz的鎊線等效電路模型。
第三章為量測驗證等效電路模型的準確性。首先我們以PCB製程以及WIPD晶片製程設計鎊線封裝電路結構,然後基於第二章提出的準靜態分析方法建立鎊線等效電路模型。接著,因為鎊線封裝電路的量測結果包含饋入至鎊線的傳輸結構S參數響應,為了將量測結果與鎊線等效電路進行比較,我們使用Through-Line-Line去嵌化方法將饋入的傳輸結構響應去除。最後,我們比較單根鎊線的HFSS模擬結果、鎊線等效電路的計算結果以及經過校正後得到僅包含鎊線S參數的量測結果,三者的比較結果十分吻合,證實我們在第二章提出的以準靜態分析方法建立的鎊線等效電路能夠適用到毫米波頻段。
第四章為鎊線封裝效應的探討與改善。因為鎊線本身帶有低通濾波器的效應,造成訊號在毫米波頻段的反射情況嚴重,為改善此缺點,使鎊線封裝適用於毫米波頻段,我們將設計鎊線結構的匹配電路,具體作法有調整鎊線形狀、使用帶狀鎊線傳遞訊號、在鎊線電路結構加上電容性的開路殘段,以及在訊號線上使用兩根鎊線進行匹配。最後,本論文提出一個透過模擬設定邊界條件的方法,來考慮類似QFN這種使用多根鎊線傳遞訊號的方式,透過此模擬設定能針對多根鎊線傳輸訊號時,耦合效應可能較為嚴重的情況快速進行分析。
最後是結論與未來工作。
關鍵字 : 毫米波、封裝、鎊線、等效電路模型
摘要(英) This paper is divided into five chapters. We explain the development of packaging and its importance in Chapter 1, and then introduce the common packaging connection methods (bond wire, ball grid array, and flip chip packaging). Then, we show that the reflection and transmission loss of bond wire is particularly serious when bond wire package is applied to the millimeter wave band because of its inherent low-pass filter characteristics. If the signal degradation can be improved, the potential of the bond wire package in the millimeter wave band will be realized.
We examines the characteristics of bond wire package in Chapter 2. First, we consider the effect of adding packaging materials on the package circuit that transmits signals by bond wire, and simulate the effect of low-loss and high-loss packaging materials on the bond wire circuit. Then, in order to effectively analyze the electrical characteristics of the bond wire package, a quasi-static-based analysis method is presented for the bond wire structure, and a bond wire equivalent circuit model is developed with accuracy covering DC to 40 GHz.
Chapter 3 is to verify the accuracy of the equivalent circuit model by measurement. First, we design the bond wire package circuit structure using the PCB process and the WIPD wafer process, and then build the bond wire equivalent circuit model based on the quasi-static analysis method proposed in Chapter 2. Then, since the measurement results of the bond wire package circuit include the S-parameter response of the transmission structure fed to the bond wire, we use the Through-Line-Line de-embedding method to remove the feed-in transmission structure response in order to compare the measurement results with the bond wire equivalent circuit. Finally, we compare the HFSS simulation results for a single bond wire, the calculation results for the bond wire equivalent circuit, and the measurement results with only the S parameter of the bond wire after correction. The results of the three comparisons are in reasonable agreement, confirming that the bond wire equivalent circuit built by the quasi-static analysis method we proposed in Chapter 2 can be applied to the millimeter wave band.
Chapter 4 is to discuss and improve the effect of bond wire package. Because of the low-pass filtering effect of the bond wire itself, the signal is seriously reflected in the millimeter wave band. In order to improve this drawback and make the bond wire package suitable for the millimeter wave band, we will design a matching circuit for the bond wire structure by adjusting the shape of the bond wire, using a ribbon bond wire to transmit the signal, adding capacitive open stubs to the bond wire circuit structure, and using two bond wires for matching on the signal line. Finally, we present a method of simulating boundary conditions to consider the use of multiple bond wires for signal transmission similar to the QFN, which allows for a quick analysis of coupling effects that may be more severe when multiple bond wires are employed for signal transmission.
The conclusion and future work are provided in Chapter 5.

Key words : millimeter wave, package, bond wire, equivalent circuit model
關鍵字(中) ★ 毫米波
★ 封裝
★ 鎊線
★ 等效電路模型
關鍵字(英) ★ millimeter wave
★ package
★ bond wire
★ equivalent circuit model
論文目次 摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 常見封裝結構 4
1-2-1 鎊線接合(Wire Bonding) 5
1-2-2 球柵陣列(Ball Grid Array, BGA) 6
1-2-3 覆晶封裝(Flip Chip) 7
1-3 研究流程與方法 8
1-4 章節架構 9
第二章 鎊線等效電路模型 10
2-1 封裝材料對封裝特性影響分析 10
2-2 建立鎊線等效電路模型 14
2-2-1 常見鎊線等效電路模型 14
2-2-2 自行建立鎊線等效電路模型 17
2-2-3 驗證自行建立的鎊線等效電路模型 23
第三章 鎊線量測與等效電路驗證 31
3-1 10 GHz版本之鎊線封裝等效電路模型驗證 31
3-1-1 10 GHz版本之鎊線電路設計與分析 32
3-1-2 10 GHz版本之鎊線等效電路模型 35
3-1-3 10 GHz版本之Through-Line-Line去嵌化方法 39
3-1-4 HFSS全波模擬、等效電路計算結果、量測結果比較 44
3-2 毫米波鎊線封裝等效電路模型驗證 47
3-2-1 40 GHz版本之鎊線電路設計與分析 47
3-2-2 40 GHz版本之鎊線等效電路模型 49
3-2-3 40 GHz版本之Through-Line-Line去嵌化方法 52
3-2-4 HFSS全波模擬、等效電路計算結果、量測結果比較 56
第四章 鎊線封裝效應探討與改善 58
4-1 鎊線匹配電路 59
4-1-1 Omega Shape鎊線匹配 61
4-1-2 單株匹配 66
4-1-3 兩根鎊線匹配 70
4-2 多根鎊線間的耦合效應 83
第五章 結論與未來工作 89
參考文獻 91
附錄一 : THROUGH-LINE-LINE去嵌化程式碼 99
附錄二 : K8400A-0000接頭規格 105
附錄三 : 探針之THROUGH校正件量測結果 107
參考文獻 [1] 揚博科技:半導體封裝。2022年,取自http://www.ampoc.com.tw/Application/Application_More?id=11。
[2] TSMC:3DFabric。2022年,取自https://3dfabric.tsmc.com/chinese/dedicatedFoundry/technology/3DFabric.htm。
[3] 電子設計技術 | EDN TAIWAN:先進封裝:突破記憶體瓶頸的解方。2022年,取自https://www.edntaiwan.com/20220330nt01-advanced-packaging-the-solution-to-the-memory-bottleneck-problem/。
[4] TechOrange科技橘報: 摩爾定律的救世主,「先進封裝」成為半導體產業的新寵兒。取自: https://buzzorange.com/techorange/2021/09/23/advanced-packaging-and-moore-law/。
[5] TechNews科技新報:先進封裝正夯,2.5D、3D和Chiplets技術有何特點(上)。2020年10月1日,取自https://www.gushiciku.cn/pl/p7lE/zh-tw。
[6] 晶化科技股份有限公司:2.5D IC封裝。2022年,取自https://www.waferchem.com.tw/2.html。
[7] ASE GROUP : 2.5D and 3D IC Packaging。2022年,取自https://ase.aseglobal.com/en/technology/advanced_25dic。
[8] 晶化科技股份有限公司:什麼是晶圓級封裝。2022年,取自https://www.waferchem.com.tw/whats.html。
[9] 超能網:台積電發布最新CoWoS封裝公藝 最大晶片面積可達原版的兩倍。2022年8月22日,取自https://www.expreview.com/73341.html。
[10] TrendForce集邦科技: 5G新星-解讀毫米波應用、發展與商機。2018年8月13日,取自https://medium.com/@trendforcemkt/%E6%8B%93%E5%A2%A3%E8%A7%80%E9%BB%9E5g%E6%96%B0%E6%98%9F%E8%A7%A3%E8%AE%80%E6%AF%AB%E7%B1%B3%E6%B3%A2%E6%87%89%E7%94%A8%E7%99%BC%E5%B1%95%E8%88%87%E5%95%86%E6%A9%9F-d83264c19a80。
[11] TechOrange科技橘報:日月光半導體推「天線封裝技術」,預計2022年量產。2019年9月17日,取自https://buzzorange.com/techorange/2019/09/17/5g-taiwan-mmwave-ase/。
[12] 3GPP Portal:NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone。2022年6月10日,取自https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3283。
[13] 3GPP Portal:NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 Standalone。2022年6月10日,取自 https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3284。
[14] EET電子工程專輯:5G毫米波時代何時到來。2021年2月22日,取自https://www.eettaiwan.com/20210222nt31-when-the-era-of-5g-mmwave-will-come/。
[15] MoneyDJ理財網:Flip Chip技術演進與應用。2022年,取自https://www.moneydj.com/kmdj/report/reportviewer.aspx?a=f83cb156-6be4-40ba-9193-d828d6663dc6。
[16] 王名正,「電性效應與銲線條件最佳化分析」,國立高雄大學,碩士論文,2015年。
[17] H. Zongjie, Y. Wei, H. Yongfang, and L. Xiaoxuan, "High reliable wire bonding consistency control in MMCM," in 2017 18th International Conference on Electronic Packaging Technology (ICEPT), 16-19 Aug. 2017.
[18] H. R. Zhu, Y. F. Sun, and X. L. Wu, "Investigation of the capacitance compensation structure for wire-bonding interconnection in multi-chips module," in 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), 14-16 Dec. 2017.
[19] S. Rick, Microwave and Millimeter-Wave Electronic Packaging. Artech, 2013, p. 1.
[20] D. Jahn, R. Reuter, Y. Yin, and J. Feige, "Characterization and Modeling of Wire Bond Interconnects up to 100 GHz," in 2006 IEEE Compound Semiconductor Integrated Circuit Symposium, 12-15 Nov. 2006.
[21] L. F. Shi, X. L. Tan, D. J. Xin, and Z. Y. Hou, "Optimization Design of Fixed-Length Bond-Wire Interconnection in Multichips Module," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 9, no. 11, pp. 2290-2297, 2019.
[22] H. Xue, C. R. Benedik, X. Zhang, S. Li, and S. Ren, "Numerical Solution for Accurate Bondwire Modeling," IEEE Transactions on Semiconductor Manufacturing, vol. 31, no. 2, pp. 258-265, 2018.
[23] B. Inder, Lumped Elements for RF and Microwave Circuits. Artech, 2003, p. 1.
[24] Y. Chen, "Micro Assembly for Radio Frequency Electronics: Characterization of Bond Wires," ed, 2019.
[25] M. M. Li, H. L. Peng, Y. B. Li, C. C. Chen-Chen, and Q. M. Wan, "A Novel Structure of Bondwire and Microstrip Lines for Chip-to-Chip Inter-Connection Up to 130GHz," in 2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS), 14-16 Dec. 2020.
[26] X. Qi, "High -frequency characterization and modeling of on -chip interconnects and RF IC wire bonds," Ph.D., Stanford University, Ann Arbor, 3026889, 2001.
[27] K. Ashu, J. Johansson, and R. Pugo, "Estimation of Wirebonded Package Inductance and Resistance using Statistical DOE/RSM," in 2019 Electrical Design of Advanced Packaging and Systems (EDAPS), 16-18 Dec. 2019.
[28] A. Gamet, S. Meillère, M. Bendahan, P. L. Fevre, and N. Froidevaux, "Investigation on bond wire dedicated to integrated time base," in 2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS), 7-10 Dec. 2014.
[29] 上通電子股份有限公司:固晶打線COB。2022年,取自https://www.sun-top.com.tw/edcontent_d.php?lang=tw&tb=2&id=208。
[30] ASE GROUP : Wire Bond BGA。2022年,取自https://ase.aseglobal.com/ch/products/assembly_offerings/wire_bond_bga_solution。
[31] 塑膠薄膜材料網-寰宇尖端薄膜有限公司:一分鐘了解什麼是PI膜(Polyimide Film)。2022年,取自http://www.film-top1.com/product-info.asp?id=659。
[32] ASE GROUP :Bumping Services。2022年,取自https://ase.aseglobal.com/en/products/assembly_offerings/bumping_solution。
[33] ASE GROUP : Flip Chip Packaging。2022年,取自https://ase.aseglobal.com/en/technology/flip_chip。
[34] 楊啟鑫:系統及封裝技術分析。2016年11月1日,取自https://www2.itis.org.tw/netreport/NetReport_Detail.aspx?rpno=474845684。
[35] 三達光學材料有限公司:半導體封裝材料。2022年,取自https://www.sunda-optical.com.tw/products_detail/104.htm。
[36] 經濟部科技處: 半導體構裝用封裝材料之發展概況。2021年11月10日,取自https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=391。
[37] 材料世界網:先進半導體液態封裝材料技術與發展。2022年,取自https://www.materialsnet.com.tw/DocView.aspx?id=45265。
[38] T. Wu et al., "A 36–40 GHz VCO with bonding inductors for millimeter wave 5G Communication," in 2019 IEEE 13th International Conference on ASIC (ASICON), 29 Oct.-1 Nov. 2019.
[39] H. Patterson, "Analysis of ground bond wire arrays for RFICs," in 1997 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium. Digest of Technical Papers, 10-10 June 1997.
[40] M. Umar, M. Laabs, N. Neumann, and D. Plettemeier, "Bondwire Model and Compensation Network for 60 GHz Chip-to-PCB Interconnects," IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 11, pp. 2196-2200, 2021.
[41] J. J. Wang, A. C. W. Lu, and Y. P. Zhang, "Hybrid technique modeling of a generic feeding network for highly integrated RF transceivers," in Proceedings of 6th Electronics Packaging Technology Conference (EPTC 2004) (IEEE Cat. No.04EX971), 8-10 Dec. 2004 2004, pp. 661-663.
[42] Y. Liang, C. Huang, and W. Wang, "Modeling and characterization of the bonding-wire interconnection for microwave MCM," in 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging, 16-19 Aug. 2010 2010, pp. 810-814.
[43] X. Yabin and Y. Huixian, "Research on Broadband Matching for Bond-Wire Based on Monte Carlo Method," in 2019 IEEE 19th International Conference on Communication Technology (ICCT), 16-19 Oct. 2019 2019, pp. 931-935.
[44] R. P. Clayton, "Loop Inductance vs. Partial Inductance," in Inductance: Loop and Partial: IEEE, 2010, pp. 307-333.
[45] 國家實驗研究院台灣半導體研究中心:晶片系統量測列表。2022年,取自https://www.tsri.org.tw/tw/measure/chipsystem_list_main.jsp。
[46] F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, "Modeling and characterization of the bonding-wire interconnection," IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 1, pp. 142-150, 2001.
[47] F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, "An equivalent circuit for the double bonding wire interconnection," in 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282), 13-19 June 1999.
[48] C. Descharles, C. Algani, B. Mercier, and G. Alquie, "Physical and electrical modeling of bonding wires up to 110 GHz," in 33rd European Microwave Conference Proceedings (IEEE Cat. No.03EX723C), 7-7 Oct. 2003.
[49] F. Alimenti, U. Goebel, and R. Sorrentino, "Quasi static analysis of microstrip bondwire interconnects," in Proceedings of 1995 IEEE MTT-S International Microwave Symposium, 16-20 May 1995.
[50] L. Hao-Geng, H. Tian-Wei, W. Ruey-Beei, and L. Chien-Min, "Model extractions of coupled bonding-wire structures in electronic packaging," in 2005 Asia-Pacific Microwave Conference Proceedings, 4-7 Dec. 2005.
[51] L. Hongwei, J. Laskar, and M. Hyslop, "A broad band Through-Line-Line de-embedding technique for BGA package measurements," in IEEE 10th Topical Meeting on Electrical Performance of Electronic Packaging (Cat. No. 01TH8565), 22-31 Oct. 2001.
[52] 林宇志,「使用三維工藝之微波與毫米波晶片封裝設計」,國立中山大學,碩士論文,民國101年。
[53] L. Kuan-Yu and M. N. El-Gamal, "Performance and modeling of bonding wire transformers in a package for RF IC′s," in 2007 Internatonal Conference on Microelectronics, 29-31 Dec. 2007.
[54] F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, "Multi-wire microstrip interconnections: a systematic analysis for the extraction of an equivalent circuit," in 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192), 7-12 June 1998.
[55] L. JuHwan, K. DaeHan, R. Jae-Sung, K. Soo-Won, and H. SungWoo, "RF characterization and modeling of various wire bond transitions," IEEE Transactions on Advanced Packaging, vol. 28, no. 4, pp. 772-778, 2005.
[56] Y. Lin, W. Lee, T. Horng, and L. Hwang, "Full Chip-Package-Board Co-Design of Broadband QFN Bonding Transition Using Backside via and Defected Ground Structure," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 4, no. 9, pp. 1470-1479, 2014.
[57] Y. Lin, W. Lee, T. Horng, and L. Hwang, "High performance plastic molded QFN package with ribbon bonding and a defective PCB ground," in 2013 IEEE 63rd Electronic Components and Technology Conference, 28-31 May 2013.
[58] Y. C. Lin, Y. C. Lin, T. S. Horng, L. T. Hwang, C. T. Chiu, and C. P. Hung, "Low cost QFN package design for millimeter-wave applications," in 2012 IEEE 62nd Electronic Components and Technology Conference, 29 May-1 June 2012.
[59] C. Li, C. Ko, C. Kuo, M. Kuo, and D. Chang, "A Low-Cost DC-to-84-GHz Broadband Bondwire Interconnect for SoP Heterogeneous System Integration," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 12, pp. 4345-4352, 2013.
[60] X. Liu, Y. Zhao, S. Wang, and Z. Wang, "A novel GaN MMICs packaging using silicon based technology," in 2016 13th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), 15-17 Nov. 2016.
[61] X. Zhang, S. Li, and S. Ren, "Adjustable lumped impedance mismatching compensation circuit," in 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), 3-5 Aug. 2016.
[62] Z. Gao, M. Tang, P. Gao, H. Yue, and Y. Tang, "Design and Measurement of D-Band Bonding-Wire Interconnection on Quartz Glass Substrate," in 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 20-23 Sept. 2020.
[63] N. Morikoshi et al., "Design of On-Board Impedance Matching Circuit for Millimeter-Wave Presystem," in 2019 12th Global Symposium on Millimeter Waves (GSMM), 22-24 May 2019.
[64] J. Li, Y. Xiong, S. Hu, W. L. Goh, D. Hou, and W. Wu, "Performance analyse on millimetre-wave bonding-wire interconnection," in 2010 IEEE Electrical Design of Advanced Package & Systems Symposium, 7-9 Dec. 2010.
[65] E. A. Sanjuan and S. S. Cahill, "QFN-based Millimeter Wave Packaging to 80GHz," in 2009 IEEE MTT-S International Microwave Workshop Series on Signal Integrity and High-Speed Interconnects, 19-20 Feb. 2009.
[66] K. Jin-Yang, L. Hai-Young, L. Jae-Hyun, and C. Dong-Pil, "Wideband characterization of multiple bondwires for millimeter-wave applications," in 2000 Asia-Pacific Microwave Conference. Proceedings (Cat. No.00TH8522), 3-6 Dec. 2000.
[67] A. Chandrasekhar et al., "Characterisation, modelling and design of bond-wire interconnects for chip-package co-design," in 33rd European Microwave Conference Proceedings (IEEE Cat. No.03EX723C), 7-7 Oct. 2003.
[68] B. Zheng, J. R. Cubillo, G. Katti, C. Jin, R. Rajoo, and K. C. Chan, "Study on low-cost QFN packages for high-frequency applications," in 2012 IEEE 14th Electronics Packaging Technology Conference (EPTC), 5-7 Dec. 2012.
[69] A. Sutono, N. G. Cafaro, J. Laskar, and M. M. Tentzeris, "Experimental modeling, repeatability investigation and optimization of microwave bond wire interconnects," IEEE Transactions on Advanced Packaging, vol. 24, no. 4, pp. 595-603, 2001.
[70] W. Tian, H. Cui, and W. Yu, "Analysis and Experimental Test of Electrical Characteristics on Bonding Wire," Electronics, vol. 8, no. 3, 2019.
[71] M. Kalfa and E. Halavut, "A fast method for obtaining active S-parameters in large uniform phased array antennas," in 2013 IEEE International Symposium on Phased Array Systems and Technology, 15-18 Oct. 2013.
[72] David M. Pozar, Microwave Engineering, 4th Edition, Wiley, 2011.
[73] 華泰電子股份有限公司:QFN規格表。2022年7月19日,取自https://www.ose.com.tw/ic-services/logic-product-packaging/dfn-qfn/。
[74] John D. Kraus, Ronald J. Marhefka, Antennas For All Applications, third edition, New York : McGRAW-HILL, 2002.
指導教授 歐陽良昱(Liang-Yu Ou Yang) 審核日期 2022-9-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明