博碩士論文 109521051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.218.254.122
姓名 謝宖鋼(Hong-Gang Xie)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 石墨烯改善歐姆接觸之氮化鎵高電子遷移率電晶體
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文針對石墨烯對於歐姆接觸電阻研究,並應用於氮化鋁鎵/氮化鎵高電子遷移率電晶體進行電性探討與研究。研究包含磊晶片材料分析、石墨烯轉印的流程和特性分析、元件的設計與製作、直流電性與動態特性分析以及Silvaco TCAD的模擬。
在氮化鋁鎵/氮化鎵之高電子遷移率電晶體,使用高溫退火來形成歐姆接觸是常用的方式,然而傳統的氮化鋁鎵/氮化鎵高電子遷移率電晶體,金屬-半導體特徵接觸電阻(specific contact resistivity, ρc)約在1.7 × 10-5 Ω∙cm2,接觸電阻(RC)為1.07 Ω∙mm。而石墨烯使用兩種不同轉印方式(乾式轉印和濕式轉印),轉印石墨烯於氮化鋁鎵表面,其特徵接觸電阻(ρc = 2.32 × 10-8 Ω∙cm2;4.69 × 10-7 Ω∙cm2),歐姆接觸電阻(RC = 0.29 Ω∙mm;0.69 Ω∙mm)。使用轉印石墨烯的方式,因為只需要在磊晶片表面轉印單層的石墨烯,所以不需要額外的製程流程。在不影響製程流程下,改善金屬與半導體接面達到降低接觸電阻效果,對於引入商業的製程流程是一大利處。以此條件下來製作石墨烯改善氮化鎵高電子遷移率電晶體歐姆接觸,並比較氮化鎵高電子遷移率電晶體以兩種石墨烯轉印方式的元件特性。在直流偏壓下,具有石墨烯層的元件最佳增益轉導值(transconductance, gm = 141.3 mS/mm),比較導通電阻(RON)的改善,有石墨烯層的元件導通電阻為9.5 Ω∙mm 相較於傳統元件導通電阻有35%的下降,顯示歐姆接觸電阻的降低可以有效改善元件端的特性。
在動態特性的分析,乾式轉印石墨烯元件有較嚴重的電流崩塌和動態導通電阻的變化,顯示元件在閘極與汲極之間有較多的缺陷使電子被捕捉,而導致元件會有較多的缺陷與石墨烯轉印的製程有關。所以本篇論文會介紹石墨烯材料的特性與這次實驗所使用的兩種轉印方式:「乾式轉印和濕式轉印」,並分析兩種轉印方式的石墨烯對於電晶體特性的影響。
摘要(英) This paper discusses and studies the research on the ohmic contact resistance with graphene and its application in the AlGaN/GaN high electron mobility transistor (HEMT). The research includes epiwafer material analysis, graphene transfer process and characteristic analysis, component design and fabrication, DC electrical and dynamic characteristics analysis, and Silvaco TCAD simulation.
In AlGaN/GaN high electron mobility transistors, high-temperature annealing to form ohmic contacts is a common method. However, for conventional AlGaN/GaN high electron mobility transistors, the metal-semiconductor specific contact resistance (ρc) is about 1.7 × 10-5 Ω∙cm2, and the contact resistance (RC) is 1.07 Ω∙mm. The specific contact resistance of the devices with a graphene layer is 2.32 × 10-8 Ω∙cm2 (dry transfer graphene layer), 4.69 × 10-7 Ω∙cm2 (wet transfer graphene layer), and ohmic contact resistance is 0.29 Ω∙mm (dry transfer graphene layer), 0.69 Ω∙mm (wet transfer graphene layer). It can be observed that graphene improves the metal-semiconductor junction. Under this condition, a graphene-improved ohmic contact AlGaN/GaN HEMT is fabricated and compared using two transfer methods. Under DC bias, the best transconductance gm is 141.3 mS/mm in the device with the graphene layer. Compared with the on-resistance (RON) of the traditional AlGaN/GaN HEMT, there is a 35% reduction, indicating that the decrease in contact resistance can effectively improve the I-V characteristics of the device.
In the analysis of dynamic characteristics, the devices with the dry transfer graphene have severe current collapse and changes in dynamic on-resistance. The reason is that the device has more defects between the gate and drain, so electrons are captured, resulting in performance degradation, which is related to the graphene transfer process.
關鍵字(中) ★ 石墨烯 關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 9
1.1 前言 9
1.2 氮化鎵材料之極化特性 11
1.3 AlGaN/GaN高電子遷移率電晶體(HEMT) 13
1.3.1 傳統式歐姆接觸 14
1.3.2 挖洞式歐姆接觸 16
1.3.3 金屬表面處理 17
1.4 石墨烯材料特性 19
1.5 研究動機與目的 22
1.6 論文架構 22
第二章 AlGaN/GaN HEMTs之磊晶結構與石墨烯轉印製程 23
2.1 石墨烯轉印方式 23
2.2 石墨烯轉印流程 28
2.2.1 濕式轉印 28
2.2.2 乾式轉印 29
2.2.3 拉曼光譜分析 30
2.3 AlGaN/GaN HEMTs with graphene layer的磊晶片結構與特性量測 33
2.3.1 歐姆接觸電阻與片電阻量測 34
2.3.2 垂直崩潰量測 38
2.3.3 水平崩潰電壓量測 39
2.4石墨烯改善歐姆接觸之氮化鎵高電子遷移率電晶體佈局 41
2.5 本章總結 43
第三章 石墨烯改善歐姆接觸之氮化鎵高電子遷移率電晶體模擬及電性量測分析 44
3.1電流-電壓特性分析 44
3.2崩潰電壓特性分析 47
3.3動態特性分析 48
3.4元件模擬特性 51
3.5本章總結 58
第四章 結論 61
參考文獻 62
附錄Ⅰ 石墨烯轉印製程流程 67
附錄Ⅱ 石墨烯改善歐姆接觸之氮化鎵高電子遷移率電晶體製程流程 69
參考文獻 [1] L. F. Alves, R. C. Gomes, P. Lefranc, R. d. A. Pegado, P.-O. Jeannin, B. A. Luciano, and F. V. Rocha, "SIC power devices in power electronics: An overview." 2017 Brazilian Power Electronics Conference (COBEP). IEEE, 2017.

[2] W. Afzal, A. Afaq, S. U. Rehman, and W. Rowe, "Performance Comparative Analysis of MESFET with Si, GaAs, SiC and GaN Substrate Effects." 2021 Photonics & Electromagnetics Research Symposium (PIERS). IEEE, 2021.
[3] F. Roccaforte, G. Greco, P. Fiorenza, and F. Iucolano, “An overview of normally-off GaN-based high electron mobility transistors,” Materials, vol. 12, no. 10, pp. 1599, 2019.
[4] O. Ambacher, B. Foutz, J. Smart, J. Shealy, N. Weimann, K. Chu, M. Murphy, A. Sierakowski, W. Schaff, and L. Eastman, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” Journal of applied physics, vol. 87, no. 1, pp. 334-344, 2000.
[5] S. Sharbati, I. Gharibshahian, T. Ebel, A. A. Orouji, and W.-T. Franke, “Analytical Model for Two-Dimensional Electron Gas Charge Density in Recessed-Gate GaN High-Electron-Mobility Transistors,” Journal of Electronic Materials, vol. 50, no. 7, pp. 3923-3929, 2021.
[6] G. Zhou, Z. Wan, G. Yang, Y. Jiang, R. Sokolovskij, H. Yu, and G. Xia, “Gate leakage suppression and breakdown voltage enhancement in p-GaN HEMTs using metal/graphene gates,” IEEE Transactions on Electron Devices, vol. 67, no. 3, pp. 875-880, 2020.
[7] R. Gong, J. Wang, S. Liu, Z. Dong, M. Yu, C. P. Wen, Y. Cai, and B. Zhang, “Analysis of surface roughness in Ti/Al/Ni/Au ohmic contact to AlGaN/GaN high electron mobility transistors,” Applied Physics Letters, vol. 97, no. 6, pp. 062115, 2010.
[8] X. Kong, K. Wei, G. Liu, J. Wang, and X. Liu, "Dislocation induced nonuniform surface morphology of Ti/Al/Ni/Au Ohmic contacts to AlGaN/GaN HEMTs."The 2012 International Workshop on Microwave and Millimeter Wave Circuits and System Technology. IEEE, 2012.
[9] H. Hasegawa, T. Inagaki, S. Ootomo, and T. Hashizume, “Mechanisms of current collapse and gate leakage currents in AlGaN/GaN heterostructure field effect transistors,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 21, no. 4, pp. 1844-1855, 2003.
[10] R. Wang, G. Li, J. Guo, B. Song, J. Verma, Z. Hu, Y. Yue, K. Nomoto, S. Ganguly, and S. Rouvimov, "Dispersion-free operation in InAlN-based HEMTs with ultrathin or no passivation." 2013 IEEE International Electron Devices Meeting. IEEE, 2013.
[11] Y. Lu, X. Ma, L. Yang, B. Hou, M. Mi, M. Zhang, J. Zheng, H. Zhang, and Y. Hao, “High RF performance AlGaN/GaN HEMT fabricated by recess-arrayed ohmic contact technology,” IEEE Electron Device Letters, vol. 39, no. 6, pp. 811-814, 2018.
[12] X.-R. You, C.-W. Chen, J. Tzou, and Y.-M. Hsin, “Study of Au-Based and Au-Free Ohmic Contacts in AlGaN/GaN HEMTs by Recessed Patterns,” ECS Journal of Solid State Science and Technology, vol. 10, no. 7, pp. 075006, 2021.
[13] S. J. Kim, T. Y. Nam, and T. G. Kim, “Low-Resistance Nonalloyed Ti/Al Ohmic Contacts on N-Face n-Type GaN via O2 Plasma Treatment,” IEEE Electron Device Letters, vol. 32, no. 2, pp. 149-151, 2010.
[14] K.-E. Byun, S. Park, H. Yang, H.-J. Chung, H. J. Song, J. Lee, D. H. Seo, J. Heo, D. Lee, and H. J. Shin, "Graphene for metal-semiconductor Ohmic contacts." 2012 IEEE Nanotechnology Materials and Devices Conference (NMDC2012). IEEE, 2012.
[15] M. Batmunkh, M. Bat‐Erdene, and J. G. Shapter, “Phosphorene and phosphorene‐based materials–prospects for future applications,” Advanced Materials, vol. 28, no. 39, pp. 8586-8617, 2016.
[16] H. Zhong, Z. Liu, L. Shi, G. Xu, Y. Fan, Z. Huang, J. Wang, G. Ren, and K. Xu, “Graphene in ohmic contact for both n-GaN and p-GaN,” Applied Physics Letters, vol. 104, no. 21, pp. 212101, 2014.
[17] J. Wang, C. Zheng, J. Ning, L. Zhang, W. Li, Z. Ni, Y. Chen, J. Wang, and S. Xu, “Luminescence signature of free exciton dissociation and liberated electron transfer across the junction of graphene/GaN hybrid structure,” Scientific Reports, vol. 5, no. 1, pp. 1-6, 2015.
[18] M. F. Romero, A. Boscá, J. Pedrós, J. Martínez, R. Fandan, T. Palacios, and F. Calle, “Impact of 2D-graphene on SiN passivated AlGaN/GaN MIS-HEMTs under mist exposure,” IEEE Electron Device Letters, vol. 38, no. 10, pp. 1441-1444, 2017.
[19] J. Kim, S. K. Baek, K. S. Kim, Y. J. Chang, and E. Choi, “Long-term stability study of graphene-passivated black phosphorus under air exposure,” Current Applied Physics, vol. 16, no. 2, pp. 165-169, 2016.
[20] R. M. Jacobberger, M. J. Dodd, M. Zamiri, A. J. Way, M. S. Arnold, and M. G. Lagally, “Passivation of germanium by graphene for stable graphene/germanium heterostructure devices,” ACS Applied Nano Materials, vol. 2, no. 7, pp. 4313-4322, 2019.
[21] W. A. De Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, and M. L. Sadowski, “Epitaxial graphene,” Solid State Communications, vol. 143, no. 1-2, pp. 92-100, 2007.
[22] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, and A. N. Marchenkov, “Electronic confinement and coherence in patterned epitaxial graphene,” Science, vol. 312, no. 5777, pp. 1191-1196, 2006.
[23] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” nature, vol. 457, no. 7230, pp. 706-710, 2009.
[24] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano letters, vol. 9, no. 1, pp. 30-35, 2009.
[25] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” science, vol. 324, no. 5932, pp. 1312-1314, 2009.
[26] C. J. Shearer, A. D. Slattery, A. J. Stapleton, J. G. Shapter, and C. T. Gibson, “Accurate thickness measurement of graphene,” Nanotechnology, vol. 27, no. 12, pp. 125704, 2016.
[27] X. Ling, J. Wu, L. Xie, and J. Zhang, “Graphene-thickness-dependent graphene-enhanced Raman scattering,” The Journal of Physical Chemistry C, vol. 117, no. 5, pp. 2369-2376, 2013.
[28] Z. Ni, Y. Wang, T. Yu, and Z. Shen, “Raman spectroscopy and imaging of graphene,” Nano Research, vol. 1, no. 4, pp. 273-291, 2008.
[29] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano letters, vol. 9, no. 12, pp. 4359-4363, 2009.
[30] N. Hong, D. Kireev, Q. Zhao, D. Chen, D. Akinwande, and W. Li, “Roll‐to‐Roll Dry Transfer of Large‐Scale Graphene,” Advanced Materials, vol. 34, no. 3, pp. 2106615, 2022.
[31] J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS nano, vol. 5, no. 9, pp. 6916-6924, 2011.
[32] L. Malard, M. A. Pimenta, G. Dresselhaus, and M. Dresselhaus, “Raman spectroscopy in graphene,” Physics reports, vol. 473, no. 5-6, pp. 51-87, 2009.
[33] B. Pandit, T. H. Seo, B. D. Ryu, and J. Cho, “Current transport mechanism in graphene/AlGaN/GaN heterostructures with various Al mole fractions,” AIP Advances, vol. 6, no. 6, pp. 065007, 2016.
[34] J. Luo, S.-L. Zhao, M.-H. Mi, W.-W. Chen, B. Hou, J.-C. Zhang, X.-H. Ma, and Y. Hao, “Effect of gate length on breakdown voltage in AlGaN/GaN high-electron-mobility transistor,” Chinese Physics B, vol. 25, no. 2, pp. 027303, 2015.
[35] S. Dröscher, P. Roulleau, F. Molitor, P. Studerus, C. Stampfer, K. Ensslin, and T. Ihn, “Quantum capacitance and density of states of graphene,” Applied physics letters, vol. 96, no. 15, pp. 152104, 2010.
[36] M. Karbalaei, D. Dideban, and H. Heidari, “Improvement in electrical characteristics of Silicon on Insulator (SOI) transistor using graphene material,” Results in Physics, vol. 15, pp. 102806, 2019.
[37] K. Nagashio, and A. Toriumi, “Density-of-states limited contact resistance in graphene field-effect transistors,” Japanese Journal of Applied Physics, vol. 50, no. 7R, pp. 070108, 2011.
[38] M. Sang, J. Shin, K. Kim, and K. J. Yu, “Electronic and thermal properties of graphene and recent advances in graphene based electronics applications,” Nanomaterials, vol. 9, no. 3, pp. 374, 2019.
[39] R. Yan, Q. Zhang, W. Li, I. Calizo, T. Shen, C. A. Richter, A. R. Hight-Walker, X. Liang, A. Seabaugh, and D. Jena, “Determination of graphene work function and graphene-insulator-semiconductor band alignment by internal photoemission spectroscopy,” Applied Physics Letters, vol. 101, no. 2, pp. 022105, 2012.
[40] "ATLAS User′s Manual," www.silvaco.com.
[41] S. Iwakami, O. Machida, M. Yanagihara, T. Ehara, N. Kaneko, H. Goto, and A. Iwabuchi, “20 mΩ, 750 V high-power AlGaN/GaN heterostructure field-effect transistors on Si substrate,” Japanese journal of applied physics, vol. 46, no. 6L, pp. L587, 2007.
[42] Y. Dora, A. Chakraborty, L. Mccarthy, S. Keller, S. DenBaars, and U. Mishra, “High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates,” IEEE Electron Device Letters, vol. 27, no. 9, pp. 713-715, 2006.
[43] S. L. Selvaraj, A. Watanabe, A. Wakejima, and T. Egawa, “1.4-kV breakdown voltage for AlGaN/GaN high-electron-mobility transistors on silicon substrate,” IEEE electron device letters, vol. 33, no. 10, pp. 1375-1377, 2012.
[44] M. Hua, J. Wei, G. Tang, Z. Zhang, Q. Qian, X. Cai, N. Wang, and K. J. Chen, “Normally-off LPCVD-SiN x/GaN MIS-FET with crystalline oxidation interlayer,” IEEE Electron Device Letters, vol. 38, no. 7, pp. 929-932, 2017.
[45] T.-E. Hsieh, E. Y. Chang, Y.-Z. Song, Y.-C. Lin, H.-C. Wang, S.-C. Liu, S. Salahuddin, and C. C. Hu, “Gate recessed quasi-normally OFF Al 2 O 3/AlGaN/GaN MIS-HEMT with low threshold voltage hysteresis using PEALD AlN interfacial passivation layer,” IEEE Electron Device Letters, vol. 35, no. 7, pp. 732-734, 2014.
[46] H. Wang, J. Wang, J. Liu, M. Li, Y. He, M. Wang, M. Yu, W. Wu, Y. Zhou, and G. Dai, “Normally-off fully recess-gated GaN metal–insulator–semiconductor field-effect transistor using Al2O3/Si3N4 bilayer as gate dielectrics,” Applied Physics Express, vol. 10, no. 10, pp. 106502, 2017.
[47] N. Ikeda, R. Tamura, T. Kokawa, H. Kambayashi, Y. Sato, T. Nomura, and S. Kato, "Over 1.7 kV normally-off GaN hybrid MOS-HFETs with a lower on-resistance on a Si substrate." 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs. IEEE, 2011.
[48] M. Hua, Z. Zhang, J. Wei, J. Lei, G. Tang, K. Fu, Y. Cai, B. Zhang, and K. J. Chen, "Integration of LPCVD-SiNx gate dielectric with recessed-gate E-mode GaN MIS-FETs: Toward high performance, high stability and long TDDB lifetime." 2016 IEEE International Electron Devices Meeting (IEDM). IEEE, 2016.
[49] Y. Kumazaki, S. Ozaki, N. Okamoto, N. Hara, and T. Ohki, “Low-Resistance and Low-Thermal-Budget Ohmic Contact by Introducing Periodic Microstructures for AlGaN/AlN/GaN HEMTs,” IEEE Transactions on Electron Devices, vol. 69, no. 6, pp. 3073-3078, 2022.
[50] B. Song, M. Zhu, Z. Hu, M. Qi, K. Nomoto, X. Yan, Y. Cao, D. Jena, and H. G. Xing, “Ultralow-leakage AlGaN/GaN high electron mobility transistors on Si with non-alloyed regrown ohmic contacts,” IEEE electron Device letters, vol. 37, no. 1, pp. 16-19, 2015.
[51] H. Yu, L. McCarthy, S. Rajan, S. Keller, S. Denbaars, J. Speck, and U. Mishra, “Ion implanted AlGaN-GaN HEMTs with nonalloyed ohmic contacts,” IEEE Electron Device Letters, vol. 26, no. 5, pp. 283-285, 2005.
[52] F. Recht, L. McCarthy, S. Rajan, A. Chakraborty, C. Poblenz, A. Corrion, J. Speck, and U. Mishra, “Nonalloyed ohmic contacts in AlGaN/GaN HEMTs by ion implantation with reduced activation annealing temperature,” IEEE electron device letters, vol. 27, no. 4, pp. 205-207, 2006.
[53] T. Nanjo, T. Motoya, A. Imai, Y. Suzuki, K. Shiozawa, M. Suita, T. Oishi, Y. Abe, E. Yagyu, and K. Yoshiara, “Enhancement of drain current by an AlN spacer layer insertion in AlGaN/GaN high-electron-mobility transistors with Si-Ion-implanted source/drain contacts,” Japanese Journal of Applied Physics, vol. 50, no. 6R, pp. 064101, 2011.
[54] K. Han, “Employing hole-array recess of barrier layer of AlGaN/GaN heterostructures to reduce annealing temperature of ohmic contact,” Semiconductor Science and Technology, vol. 32, no. 10, pp. 105010, 2017.
[55] B. Benakaprasad, A. M. Eblabla, X. Li, K. G. Crawford, and K. Elgaid, “Optimization of ohmic contact for AlGaN/GaN HEMT on low-resistivity silicon,” IEEE Transactions on Electron Devices, vol. 67, no. 3, pp. 863-868, 2020.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2022-9-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明