博碩士論文 108521119 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.221.187.121
姓名 周靖軒(Jing-Xuan Chou)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 微小化雙頻阻抗匹配網路於雙頻放大器設計之應用
(Design of dual-band amplifiers using miniature dual-band impedance matching network)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 具有良好選擇度的寬頻吸收式帶止濾波器★ 微小化吸收式帶止濾波器之通帶改善
★ 共面波導帶通濾波器之研製★ 微帶耦合線帶通濾波器與雙工器研製
★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製★ K-Band及Q-Band毫米波帶通濾波器設計
★ 薄膜製程射頻被動元件設計★ 微波帶通低雜訊放大器設計
★ 積體式微波帶通濾波器之研製★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列
★ 以多重耦合線實現多功能帶通濾波器★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-8以後開放)
摘要(中) 本研究使用以雙頻橋式T線圈為基礎之微小化雙頻阻抗匹配網路,實現可同時於2.45 / 5.5 GHz操作之雙頻低雜訊放大器與雙頻功率放大器,期能應用於IEEE 802.11 WLAN系統之2.4和5 GHz頻帶。首先,雙頻低雜訊放大器使用cascode架構搭配源極退化電感,並以雙頻阻抗匹配電路在兩頻率同時達成雜訊與阻抗匹配。電路以TSMC 0.18-μm CMOS與AFS Corp. IPD覆晶異質整合製程實現,整體電路面積為2.85 mm × 1.75 mm。在2.45 / 5.5 GHz之實測小訊號增益為15.6 / 12.1 dB,輸入、輸出反射係數皆大於10 dB,雜訊指數為2.6 / 2.8 dB,IP1dB為-18 / -14 dBm,IIP3為-5.5 / -2 dBm,於1.8 V之VDD下,功耗為11.9 mW。其次,雙頻功率放大器操作於Class-AB模式,並採用雙頻阻抗匹配電路於兩頻率達到最大功率輸出。電路以WIN 0.15-μm pHEMT GaAs製程實作,晶片面積為2.5 mm × 2.0 mm。在2.45 / 5.5 GHz之實測輸入反射損耗為11.9 / 11.9 dB,小訊號增益為12.9 / 9.3 dB,Psat為24.3 / 24.6 dBm,PAE峰值為31.4 / 32.6 %。而在以IEEE 802.11ac系統之16-QAM調變訊號進行實測的結果方面,於符合系統EVM規格與頻譜遮罩規範下,在2.45 / 5.5 GHz之最大輸出功率為19.1 / 20.3 dBm,此時之EVM為-27.3 / -27.4 dB,ACPR則為-29.0 / -28.6 dBc。透過上述兩種雙頻放大器設計,本研究成功驗證以雙頻橋式T線圈為基礎之雙頻匹配電路的可行性。
摘要(英) This study presents 2.45 / 5.5 GHz concurrent dual-band low-noise amplifier (LNA) and dual-band power amplifier (PA) designs that employ dual-band bridge-T coil-based miniature dual-band impedance matching network. The proposed concurrent dual-band amplifiers are targeted for application in the 2.4- and 5-GHz bands of the IEEE 802.11 WLAN system. First, the proposed dual-band LNA adopts the cascode common source inductive degeneration topology, and dual-band impedance matching circuits are employed to achieve simultaneous noise and impedance matching at two operation frequencies. The proposed 2.45 / 5.5-GHz dual-band LNA is implemented through the heterogeneous integration of TSMC 0.18-μm CMOS and AFS Corp. integrated passive device (IPD) technologies, and the overall circuit size is 2.85 mm × 1.75 mm. At 2.45 / 5.5 GHz, the measured small signal gain is 15.6 / 12.1 dB, the measured input and output return loss are better than 10 dB, the measured noise figure is 2.6 / 2.8 dB, while the measured input P1dB and input IP3 are -18 / -14 dBm and -5.5 / -2 dBm, respectively. The measured power consumption under a VDD of 1.8 V is 11.9 mW. Next, the proposed dual-band PA is operated in the class-AB mode, and it utilizes dual-band impedance matching circuits to achieve maximal output power delivery at the two operation frequencies. The proposed 2.45 / 5.5-GHz dual-band PA is implemented in WIN 0.15-μm pHEMT GaAs technology, and the chip area is 2.5 mm × 2.0 mm. The measurement output power is 24.3 / 24.6 dBm while the peak power added efficiency (PAE) is 31.4 / 32.6 % at 2.45 / 5.5 GHz. The measured small signal gain and input return loss are 12.9 / 9.3 dB and 11.9 / 11.9 dB at 2.45 / 5.5 GHz, respectively. Under the IEEE 802.11ac EVM and transmit spectrum mask specifications, the maximum output power for 16-QAM modulation is 19.1 / 20.3 dBm, while the EVM and ACPR are -27.3 / -27.4 dB and -29.0 / -28.6 dBc, respectively. Through these two dual-band amplifier design examples, this study proves the feasibility of dual-band bridge-T coils for dual-band impedance matching network designs.
關鍵字(中) ★ 雙頻
★ 低雜訊放大器
★ 功率放大器
★ 阻抗匹配
★ 異質整合
★ 砷化鎵
關鍵字(英) ★ dual-band
★ low-noise amplifier
★ power amplifier
★ impedance matching
★ heterogeneous integration
★ GaAs
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 xii
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 章節介紹 3
第二章 微小化雙頻阻抗匹配網路 5
2.1 雙頻橋式T線圈 5
2.2 雙頻阻抗匹配網路 8
2.3 小結 13
第三章 雙頻低雜訊放大器 14
3.1 電路製程 15
3.2 電路架構設計 18
3.2.1 主要架構 18
3.2.2 雙頻阻抗匹配網路 25
3.3 電路佈局設計與電磁模擬 30
3.3.1 T18 (CMOS)晶片 30
3.3.2 GIPD (IPD)晶片 33
3.3.3 T18與GIPD晶片覆晶整合 44
3.4 電路實作與量測 51
3.5 結果與討論 58
第四章 雙頻功率放大器 60
4.1 電路製程 61
4.2 電路架構設計 61
4.2.1 主要架構 61
4.2.2 雙頻阻抗匹配網路 68
4.3 電路佈局設計與電磁模擬 73
4.4 電路實作與量測 104
4.4.1 連續波量測 105
4.4.2 調變訊號量測 114
4.5 結果與討論 134
第五章 總結與未來展望 136
參考文獻 138
參考文獻 [1] H. Hashemi and A. Hajimiri, “Concurrent multiband low-noise amplifiers—Theory, design, and applications,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 1, pp. 288–301, Jan. 2002.
[2] Y.-S. Lin and C.-H. Wei, “A novel miniature dual-band impedance matching network for frequency-dependent complex impedances,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 10, pp. 4314–4326, Oct. 2020.
[3] W.-T. Fang, E.-W. Chang, and Y.-S. Lin, “Bridged-T coil for miniature dual-band branch-line coupler and power divider designs,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 2, pp. 889–901, Feb. 2018.
[4] S. Sattar and T. Z. A. Zulkifli, “A 2.4/5.2-GHz concurrent dual-band CMOS low noise amplifier,” IEEE Access, vol. 5, pp. 21148–21156, 2017.
[5] T. Kitano, K. Komoku, T. Morishita, and N. Itoh, “A CMOS LNA equipped with concurrent dual-band matching networks,” in Proc. IEEE Asia Pacific Microw. Conf. (APMC), Nov. 2017, pp. 566–569.
[6] Y. Sawayama, T. Morishita, K. Komoku, and N. Itoh, “Dual-band concurrent low noise LNA,” in Proc. IEEE Int. Symp. Radio-Frequency Integr. Technol. (RFIT), Sep. 2020, pp. 160–162.
[7] Y. Sawayama, T. Morishita, K. Komoku, and N. Itoh, “Dual-band concurrent LNA with low gain deviation and low noise figure,” in Proc. IEEE Asia Pacific Microw. Conf. (APMC), Nov. 2020, pp. 1006–1008.
[8] Y.-C. Hsiao, C. Meng, and C. Yang, “Design optimization of single-/dual-band FET LNAs using noise transformation matrix,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 2, pp. 519–532, Feb. 2016.
[9] W. L. Chang, C. Meng, J. H. Ni, K. C. Chang, C. K. Chang, P. Y. Lee, and Y. L. Huang, ‘‘Analytical noise optimization of single-/dual-band MOS LNAs with substrate and metal loss effects of inductors,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 7, pp. 2454–2467, Jul. 2019.
[10] Y.-J. Hong, S.-F. Wang, P.-T. Chen, Y.-S. Hwang, and J.-J. Chen, “A concurrent dual-band 2.4/5.2 GHz low-noise amplifier using gain enhanced techniques,” in Proc. Asia-Pacific Symp. Electromagn. Compat. (APEMC), May 2015, pp. 231–234.
[11] K.-A. Hsieh, H.-S. Wu, K.-H. Tsai, and C.-K. C. Tzuang, “A dual-band 10/24-GHz amplifier design incorporating dual-frequency complex load matching,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1649–1657, Jun. 2012.
[12] 魏俊豪:<微小化雙頻匹配電路設計及應用>,碩士論文,國立中央大學,西元2020年1月。
[13] G. Nikandish, E. Babakrpur, and A. Medi, “A harmonic termination technique for single- and multi-band high-efficiency class-F MMIC power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 5, pp. 1212–1220, May 2014.
[14] A. Alizadeh, M. Frounchi, and A. Medi, “Dual-band design of integrated class-J power amplifiers in GaAs pHEMT technology,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 8, pp. 3034–3045, Aug 2017.
[15] P. Zurek and Z. Popovic, “Two-stage concurrent X/Ku dual-band GaAs MMIC power amplifier,” in IEEE MTT-S Int. Microw. Symp. Dig., Aug. 2020, pp. 269–272.
[16] G. Lv, W. Chen, X. Chen, and Z. Feng, “An energy-efficient Ka/Q dual-band power amplifier MMIC in 0.1-μm GaAs process,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 6, pp. 530–532, May 2018.
[17] H. Xie, Y. J. Cheng, Y. R. Ding, L. Wang and Y. Fan, “A high-efficiency 28 GHz/39 GHz dual-band power amplifier MMIC for 5G communication,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 11, pp. 1227–1230, Nov. 2021.
[18] R. Quaglia, V. Camarchia, and M. Pirola, “Dual-band GaN MMIC power amplifier for microwave backhaul applications,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 6, pp. 409–411, Jun. 2014.
[19] Z.-J. Huang, Z.-H. Fu, B.-W. Huang, Y.-T. Lin, K.-Y. Kao, and K.-Y. Lin, ‘‘A millimeter-wave dual-band class-F power amplifier in 90 nm CMOS,’’ in Proc. IEEE Int. Symp. Radio-Freq. Integr. Technol. (RFIT), Sep. 2020, pp. 70–72.
[20] K. Ding, D. M. W. Leenaerts, H. Gao, “A 28/38 GHz dual-band power amplifier for 5G communication,” IEEE Trans. Microw. Theory Techn., early access.
[21] C. Huynh and C. Nguyen, “New technique for synthesizing concurrent dual-band impedance-matching filtering networks and 0.18-μm SiGe BiCMOS 25.5/37-GHz concurrent dual-band power amplifier,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 11, pp. 3927–3939, Nov. 2013.
[22] 方偉廷:<基於橋式T線圈之微型化切換式波束成型模組>,博士論文,國立中央大學,西元2017年6月。
[23] IEEE Standard for Information technology—Telecommunications and information exchange between systems–Local and metropolitan area networks—Specific requirements–Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Standard 802.11-2016, pp. 1–3534, Dec. 2016.
[24] D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745–759, May 1997.
[25] A. Nieuwoudt, T. Ragheb, H. Nejati, Y. Massoud, "Numerical design optimization methodology for wideband and multi-band inductively degenerated cascode CMOS low noise amplifiers," IEEE Transactions on Circuits and Systems I: Regular Papers, vol.56, no.6, pp.1088-1101, Jun. 2009.
[26] P. Andreani and H. Sjoland, ‘‘Noise optimization of an inductively degenerated CMOS low noise amplifier,’’ IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 48, no. 9, pp. 835–841, Sep. 2001.
[27] T.-K. Nguyen, C.-H. Kim, G.-J. Ihm, M.-S. Yang, and S.-G. Lee, “CMOS low-noise amplifier design optimization techniques,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 5, pp. 1433–1442, May 2004.
[28] G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 1997.
[29] M. L. Edwards and J. H. Sinsky, “A New Criteria for Linear 2-Port Stability Using a Single Geometrically Derived Parameter,” IEEE Trans. Microw. Theory Techn., vol. 40, no. 12, pp. 2303–2311, Dec. 1992.
[30] D. Linten et al., “A 5-GHz fully integrated ESD-protected low-noise amplifier in 90-nm RF CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1434–1442, Jul. 2005.
[31] Y.-C. Wang, Z.-Y. Huang, and T. Jin, “A 2.35/2.4/2.45/2.55 GHz low-noise amplifier design using body self-biasing technique for ISM and LTE band application,” IEEE Access, vol. 7, pp. 183761–183769, 2019.
[32] IEEE Standard for Information technology—Telecommunications and information exchange between systems–Local and metropolitan area networks—Specific requirements–Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications–Amendment 4: Enhancements for Very High Throughput for Operation in Bands below 6 GHz, IEEE Standard 802.11ac-2013, pp.1-425, Dec. 2013.
指導教授 林祐生(Yo-Shen Lin) 審核日期 2022-9-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明