博碩士論文 108323052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:18.189.188.8
姓名 張凱翔(Kai-Hsiang Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 垂直振動片置入物對儲槽內顆粒排放行為之影 響
(The effect of vibrated plate on the discharge behavior in a silo)
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 在現今的工程產業中,儲槽佔了非常重要的角色,其不只在容器內部中儲存顆粒,儲槽的排放過程也是業界非常關心的議題,而在顆粒排放中,經常會因為出口大小或顆粒大小等造成永久性堵塞行為,以至於出口處無法完整地排放顆粒。為了將出口處堵塞的顆粒排出,經常會運用人力敲打動作使顆粒順利完整排出,這項人力成本在工程產業上是非常困擾的問題。
在本論文實驗中,以類二維容器為基底,並在內部出口上方處置入一長條形置入物
,並利用振動馬達使 其上下垂直運動,並在出口下方設置輸送履帶,使顆粒順利輸送進實驗設備下方容器內。實驗過程皆以顆粒數約2000顆進行排放,並為了捕捉內部流動現象,排放進行皆會用高速攝影機拍攝影像,並在後續利用粒子追蹤法進行影像分析,進而探討質量流率、架橋次數、架橋維持時間等。
經過一系列地分析後得知,加入垂直運動振動片確實在不同振動幅度與振動頻率下會影響到整體地排放效率,不管在質量流率或者架橋產生行為,其所呈現出來的趨勢皆會不一樣,當振幅非常小時,整體的排放效率非常慢,因為架橋產生次數較多而且架橋維持時間也較長久,而當振幅較大時,排放過程較為順利進行。
在後續分析架橋行為過程中,架橋被分成以振動片為中心的左右半邊架橋進行討論 ,為了得知與振動片連結一起的左右半邊架橋結構性,透過一階線性回歸量化架橋結構,並測量其與振動片之間的夾角角度。根據分析後的結果發現,其夾角角度與架橋結構的穩定性存在非常大的關連性。
摘要(英) In today′s engineering industry, the storage tank plays a very important role, not only in storing the particles inside the container, but also in the discharge process of the tank is a very concerned issue in the industry, and in the discharge of the particles, the outlet size or the size of the particles often cause permanent blockage behavior, so that the outlet can not discharge the particles completely. In order to discharge the clogged particles at the outlet, the particles are often discharged smoothly and completely by manual knocking action, and this labor cost is a very troublesome problem in the engineering industry.
In the experiment of this thesis, a two-dimensional container was used as the base, and a long bar-shaped insert was placed above the internal outlet, and a vibrated plate was used to make it move vertically up and down, and a conveyor belt was set up below the outlet, so that the particles were smoothly transported into the container under the experimental equipment. In order to capture the internal flow phenomenon, a high-speed camera is used to take images of the discharge process, and the images are later analyzed by the particle tracking method to investigate the mass flow rate, the number of clogging times, and the clogging maintenance time.
After a series of analysis, it was found that the addition of vertical vibrated plate would indeed affect the overall discharge efficiency at different vibration amplitudes and frequencies.
In the subsequent analysis of the clogging behavior, the bridges were divided into the left and right halves of the bridges centered on the vertical vibrated plate. In order to know the structural properties of the left and right halves of the arch connected with the vertical vibrated plate, the arch were quantified by a linear regression and the angle between with the vertical vibrated plate was measured. Based on the results of the analysis, it was found that there was a strong correlation between the angle of the arch and the stability of the arch structure.
Keywords : Silo , Particle , Arch , Vibrated Plate , Amplitude , Frequency
關鍵字(中) ★ 儲槽
★ 顆粒
★ 架橋
★ 振動片
★ 振幅
★ 頻率
關鍵字(英) ★ Silo
★ Particle
★ Arch
★ Vibrated Plate
★ Amplitude
★ Frequency
論文目次 目錄
摘要 i
Abstract ii
目錄 iii
附表目錄 v
附圖目錄 vi
符號說明 ix
第一章 緒論 1
1.1前言 1
1.2文獻回顧 2
1.2.1 儲槽出口狀態與質量流率 2
1.2.2 儲槽顆粒速度與流動區域分布 3
1.2.3 儲槽架橋行為的研究 4
1.2.3 儲槽架橋破壞行為的研究 4
1.3研究動機 5
1.4論文架構 6
第二章 實驗方法 7
2.1 實驗設備 7
2.2 實驗流程 9
2.2.1 實驗事前準備 9
2.2.2 實驗流程 10
2.2.3 實驗結束 10
2.3 分析方法 10
2.3.1粒子追蹤法 10
2.3.2質量流率分析法 11
2.3.3架橋次數與維持時間分析法 11
2.3.4架橋角度分析法 12
第三章 結果與討論 25
3.1 儲槽排放行為 25
3.1.1儲槽顆粒數隨時間變化與振動片垂直振動的影響探討 25
3.1.2顆粒排放平均質量流率 26
3.1.3顆粒排放左右平均質量流率 27
3.2 儲槽系統架橋行為探討 28
3.2.1顆粒左右兩側同時架橋行為探討 29
3.2.2顆粒左右平均架橋次數 29
3.2.3顆粒左右平均架橋時間 30
3.2.4左右半邊架橋顆粒數與架橋角度對架橋時間的影響 31
第四章 結論 81
參考資料 83
參考文獻 [1] Harmens, A., 1963, “Flow of granular material through horizontal apertures,” Chemical Engineering Science, Vol. 18, pp.297-306.
[2] Beverloo, W. A., Leniger, H. A., & van de Velde, J., 1961, “The flow granular solids through orifice,” Chemical Engineering Science, Vol. 15(3-4), pp.260-269.
[3] Janda, A., Zuriguel, I., & Maza, D., 2012, “Flow Rate of Particles through Apertures Obtained from Self-Similar Density and Velocity Profiles,” Physical Review Letters, Vol. 108(24), 248001.
[4] Lozano, C., Lumay, G., Zuriguel, I., Hidalgo, R. C., Garcimartin, A., 2012, “Brea-king Arches with Vibrations: The Role of Defects,” Physical Review Letters, Vol. 109(6), 068001.
[5] Zuriguel, I., Janda, A., Garcimartin, A., Lozano, C., & Arevalo, R., 2011, “Silo Clogging Reduction by the Presence of an Obstacle,” Physical Review E, Vol. 98(2), 278001.
[6] Gella, D., Maza, D., Zuriguel, I., “Granular flow in a silo discharged with a conv-eyor belt,” Powder Technology, Vol. 360, pp.104–111.
[7] Bao De-Song, Zhang Xun-Sheng, Xu Guang-Lei, Pan Zheng-Quan, and Tang Xiao-Wei., 2003, “Critical phenomenon of granular flow on a conveyor belt,” PHYSIC-AL REVIEW E, Vol. 67, 062301.
[8] Gella, D., Maza, D., Zuriguel, I., 2017, “Role of particle size in th-e kinematic pr-operties of silo flow,” PHYSICAL REVIEW E, Vol. 98, 052904.
[9] M. A. Aguirre, J. G. Grande, A. Calvo, L. A. Pugnaloni, J.-C. Ge´minard,2010, “Pressure Independence of Granular Flow through an Aperture,” Phys-ical Review Letters, Vol. 104(23), 238002.
[10] Maria Alejandra Aguirre, Juan Gabriel Grande, Adriana Calvo, Luis A. Pugnalon-i, Jean-Christophe G´eminard, 2011 “Granular flow through an aperture: Pressure and flow rate are independent,” PHYSICAL REVIEW E, Vol. 83, 061305.
[11] Julio R. Valdes and J. Carlos Santamarina, 2008, “Clogging: bridge formation andvibration-based destabilization,” Canadian Geotechnical Journal, Vol. 45, pp.177-184.
[12] Mankoc, C., Garcimartín, A., Zuriguel, I., and Diego Maza, 2009, “Role of vibrations in the jamming and unjamming of grains discharging from a silo,” PHYSICAL REVIEW E, Vol. 80, 011309.
[13] B. V. Guerrero, L. A. Pugnaloni, C. Lozano, I. Zuriguel, A. Garcima-rtín, 2018. “Slow relaxation dynamics of clogs in a vibrated granular silo,” PHYSICAL REVI-EW E, Vol. 97, 042904.
[14] C. Lozano, I. Zuriguel, and A. Garcimart´ın, 2015, “Stability of clogging arches in a silo submitted to vertical vibrations,” PHYSICAL REVIEW E, Vol. 91, 062203.
[15] A. Janda1, D. Maza1, A. Garcimartin1, E. Kolb, J. Lanuza and E. Clement, 2009, “Unjamming a granular hopper by vibration,” EPL, Vol. 87, 24002.
[16] Roberto Arevalo and Iker Zuriguel, 2016, “Unjamming a granular hopper by vibration,” Soft Matter, Vol. 12, pp.123-130.
[17] López, D., Hernández-Delfin, D., C. Hidalgo., R., Maza, D., Zuriguel I., 2020, PHYSICAL REVIEW E, Vol. 102, 010902.
[18] Xin Wang, Hong-Wei Zhu, Qing-Fan Shi, and Ning Zheng, 2020, “Discharge flow of granular particles through an orifice on a horizontal hopper: Effect of the hopper angle,” Chin. Phys. B, Vol. 29(4), 044502
[19] Zuriguel, I., Maza, D., Janda, A., Hidalgo, R. C., & Garcimartin, A., 2019,“Velocity fluctuations inside two and three dimensional silos,” GranularMatter, Vol. 21(3).
[20] Samadani, A., Pradhan, A., & Kudrolli, A., 1999, “Size segregation ofgranular matter in silo discharges,” Physical Review E, Vol. 60(6).
[21] López-Rodríguez, D., Gella, D., To, K., Maza, D., Garcimartín, A., Zuriguel, I., 2019, “Effect of hopper angle on granular clogging,” PHYSICAL REVIEW E, Vol. 99, 032901.
[22] Pascot, A., Gaudel, N., Antonyuk S., Bianchin J., Richter, S., 2020, “Influence of mechanical vibrations on quasi-2D silo discharge of spherical particles,” Chemical Engineering Science, Vol. 224, 115749
[23] Reddy, A. V. K., Kumar, S., Reddy, K. A., & Talbot, J., 2018, “Granular silo flow of inelastic dumbbells: Clogging and its reduction,” Physical Review E,Vol. 98(2), 022904.
[24] To, K. W., & Tai, H. T., 2017, “Flow and clog in a silo with oscillating exit,”Physical Review E, Vol. 96(3), 032906.
[25] Gella, D., Maza, D., and Zuriguel I., 2017, “Linking bottleneck clogging with flow kinematics in granular materials: The role of silo width,” PHYSICAL REVIEW FLUIDS, Vol. 2, 084304
[26] Darias, J.R., Gella, D., Fernandez, M.E., Zurigue, I., Maza, D., 2020 “The hopper angle role on the velocity and solid-fraction profiles at the outlet of silos,” PHYSICAL Technology, Vol. 336, pp.488-496
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2022-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明