博碩士論文 109323061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:18.191.43.140
姓名 黃楚雯(Chu-Wen Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鎳鉬鋅合金微柱、微螺旋之製備及其在1M KOH中之產氫行為探討
(Preparation of Ni-Mo-Zn Alloy micropillars and Microspirals and Investigation of Their Hydrogen Production Behavior in 1M KOH)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 鎳基金屬是工業電解水製造氫氣之熱門陰極材料。近幾年來,新開發的鎳鋅、鎳鉬等二元合金,在陰極產氫應用表現優異。本研究中藉由合金中所含之金屬鋅,在鹼性溶液中溶蝕後,可增加合金電極產氫催化電極之表面積,增加產氫活性。與鎳搭配鉬元素具有協同效應,改變d軌道的電子密度,從而降低金屬表面上的ΔGH(free energy for hydrogen adsorption),提高氫還原的催化活性。以上兩點進行發想,然而以微陽極導引製程(Micro-anode guided electroplating, MAGE)製備鎳鉬鋅三元合金。電鍍製程中透過改變鍍浴中鉬酸鈉含量(0.02 M~0.26 M)與析鍍間距(35 µm~65 µm)對合金微柱的表面形貌、化學組成、晶體結構、機械性質進行討論。並且將不同之鎳鉬鋅合金微柱,浸入至1 M KOH中,使用循環伏安法、塔弗極化曲線、計時電位法量測、電化學阻抗分析,探討其產氫性能表現。
結果顯示: 在鍍浴中鉬酸鈉濃度為0.10 M,並且電壓為4.2 V與析鍍間距為35 µm的條件下,所微電鍍出的10/35微柱(Ni29.4Mo66.9Zn3.7),具有最好的產氫效率。有最小的Tafel斜率(79 mV/dec)與最大的交換電流密度值(3.1 mA/cm2)。在循環伏安曲線中具有最低產氫起始電位(-0.17 V vs. RHE)與最大的陰極峰值電流密度(651 mA/cm2)。在-300 mA/cm2下的計時電位法,具有最小的電位(-0.42 V vs. RHE)。在-200 mA/cm2下的產氫電化學阻抗分析,具有最小的電荷轉移阻抗(4.54 Ω•cm2)。以微陽極引導電鍍法製備之鎳鉬鋅合金微柱為鹼性水溶液電解產氫之潛力材料。
摘要(英) Nickel-based metals are popular cathode materials for industrial water electrolysis to produce hydrogen. In recent years, newly developed binary alloys such as nickel-zinc and nickel-molybdenum have performed well in the application of cathode hydrogen production. In this study, the metal zinc contained in the alloy can be dissolved in an alkaline solution to increase the surface area of the hydrogen-producing catalytic electrode of the alloy electrode to increase the hydrogen-producing activity. And through the synergistic effect of nickel and molybdenum, the electron density of the d orbital is changed, thereby changing the ΔGH on the metal surface and improving the catalytic activity of hydrogen reduction. The nickel-molybdenum-zinc ternary alloy was prepared by Micro-anode guided electroplating (MAGE). During the electroplating process, the surface morphology, chemical composition, crystal structure, and mechanical properties of the alloy micropillars were discussed by changing the sodium molybdate content (0.02 M~0.26 M) and the distance between anode and cathode (35 μm~65 μm) in the plating bath. And different nickel-molybdenum-zinc alloy micropillars were soaked in 1 M KOH solution. The hydrogen production performance was discussed by cyclic voltammetry, hydrogen production polarization curve, chronopotentiometry measurement, and electrochemical impedance analysis.
The results show that when the concentration of sodium molybdate in the plating bath is 0.10 M, and the voltage is 4.2 V and the distance between cathode and anode is 35 μm, the electroplated 10/35 micropillars (Ni29.4Mo66.9Zn3.7) have the highest good hydrogen production efficiency.It has the smallest Tafel slope (79 mV/dec) and the largest exchange current density value (3.1 mA/cm2). It has the lowest hydrogen production onset potential (-0.17 V vs. RHE) and the highest cathodic peak current density (651 mA/cm2) in the cyclic voltammetry curve. Chronopotentiometry at -300 mA/cm2 with the smallest potential (-0.42 V vs. RHE). Chronopotentiometry at -300 mA/cm2. Electrochemical impedance analysis of hydrogen production at -200 m, with the smallest charge transfer impedance (4.54 Ω•cm2). The nickel-molybdenum-zinc alloy micropillars prepared by the micro-anode-guided electroplating method are potential materials for hydrogen production by electrolysis of alkaline aqueous solution.
關鍵字(中) ★ 微陽極引導電鍍
★ 鎳鉬鋅合金
★ 微螺旋
★ 產氫
★ 非貴金屬催化劑
關鍵字(英) ★ Micro-anode guided electroplating
★ NiMoZn alloy
★ Micro-helix
★ Hydrogen production
★ Non-precious metal catalyst
論文目次 摘要 vi
Abstract viii
目錄 xi
表目錄 xiv
圖目錄 xviii
第一章、 前言 1
1-1 研究背景 1
1-2 研究動機與目的 3
第二章、 文獻回顧與基礎理論 7
2-1 電鍍原理 7
2-2 局部電化學電鍍製程之發展 8
2-3 奈微米實驗室微電鍍技術之發展 9
2-4 合金電鍍 10
2-5 電鍍法拉第效率 12
2-6 奈米壓痕測試材料之硬度與楊氏模數 12
2-7 電解水產氫機制 13
2-8 非貴金屬陰極材料 15
第三章、 實驗方法 19
3-1 實驗流程 19
3-2 實驗設備 20
3-3 陰陽極製作 21
3-4 鍍浴組成 21
3-5 微陽極導引電鍍法 22
3-6 掃瞄式電子顯微鏡和能量色散X射線光譜 22
3-7 X光繞射儀 23
3-8 機械性質量測 23
3-9 電場模擬 23
3-10 析鍍時的極化曲線 24
3-11 產氫的電化學測試 24
第四章、 結果 28
4-1不同鉬酸鈉濃度鍍浴所得鎳鉬鋅合金微柱之差異 28
4-2不同析鍍間距所得鎳鉬鋅合金微柱之差異 32
4-3 鎳鉬鋅合金微螺旋析鍍參數之影響 35
4-4 鎳鉬鋅合金微柱之析氫反應 37
第五章、 討論 43
5-1 析鍍參數對析鍍鎳鉬鋅微柱之探討 43
5-2 鎳鉬鋅合金微螺旋結構探討 50
5-3 鎳鉬鋅合金之產氫反應 51
第六章、 結論與未來展望 56
參考文獻 58
參考文獻 1. Abas, N., Kalair, A., and Khan, N., “Review of fossil fuels and future energy technologies”, Futures. 69, p. 31-49, 2015
2. Johnsson, F., Kjärstad, J., and Rootzén, J., “The threat to climate change mitigation posed by the abundance of fossil fuels”, Climate Policy. 19(2), p. 258-274, 2019
3. Midilli, A. and Dincer, I., “Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption”, International Journal of Hydrogen Energy. 33(16), p. 4209-4222, 2008
4. Zhou, H., Yu, F., Sun, J., He, R., Wang, Y., Guo, C.F., Wang, F., Lan, Y., Ren, Z., and Chen, S., “Highly active and durable self-standing WS 2/graphene hybrid catalysts for the hydrogen evolution reaction”, Journal of Materials Chemistry A. 4(24), p. 9472-9476, 2016
5. Joyner, J., Oliveira, E.F., Yamaguchi, H., Kato, K., Vinod, S., Galvao, D.S., Salpekar, D., Roy, S., Martinez, U., and Tiwary, C.S., “Graphene supported MoS2 structures with high defect density for an efficient HER electrocatalysts”, ACS Applied Materials & Interfaces. 12(11), p. 12629-12638, 2020
6. Granovskii, M., Dincer, I., and Rosen, M.A., “Exergetic life cycle assessment of hydrogen production from renewables”, Journal of Power Sources. 167(2), p. 461-471, 2007
7. Zhu, Y., Yuan, M., Deng, L., Ming, R., Zhang, A., Yang, M., Chai, B., and Ren, Z., “High-efficiency electrochemical hydrogen evolution based on the intermetallic Pt 2 Si compound prepared by magnetron-sputtering”, RSC advances. 7(3), p. 1553-1560, 2017
8. LeValley, T.L., Richard, A.R., and Fan, M., “The progress in water gas shift and steam reforming hydrogen production technologies–A review”, International Journal of Hydrogen Energy. 39(30), p. 16983-17000, 2014
9. Khan, M.A., Zhao, H., Zou, W., Chen, Z., Cao, W., Fang, J., Xu, J., Zhang, L., and Zhang, J., “Recent progresses in electrocatalysts for water electrolysis”, Electrochemical Energy Reviews. 1(4), p. 483-530, 2018
10. Nady, H. and Negem, M., “Electroplated Zn–Ni nanocrystalline alloys as an efficient electrocatalyst cathode for the generation of hydrogen fuel in acid medium”, International Journal of Hydrogen Energy. 43(10), p. 4942-4950, 2018
11. Chhowalla, M., Shin, H.S., Eda, G., Li, L.-J., Loh, K.P., and Zhang, H., “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets”, Nature chemistry. 5(4), p. 263-275, 2013
12. Conway, B. and Jerkiewicz, G., “Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’for cathodic H2 evolution kinetics”, Electrochimica Acta. 45(25-26), p. 4075-4083, 2000
13. Parsons, R., “The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen”, Transactions of the Faraday Society. 54, p. 1053-1063, 1958
14. Zhang, L., Wang, Q., Li, L., Banis, M.N., Li, J., Adair, K., Sun, Y., Li, R., Zhao, Z.-J., and Gu, M., “Single atom surface engineering: A new strategy to boost electrochemical activities of Pt catalysts”, Nano Energy. 93, p. 106813, 2022
15. Wang, H., Xiao, X., Liu, S., Chiang, C.-L., Kuai, X., Peng, C.-K., Lin, Y.-C., Meng, X., Zhao, J., and Choi, J., “Structural and electronic optimization of MoS2 edges for hydrogen evolution”, Journal of the American Chemical Society. 141(46), p. 18578-18584, 2019
16. Bolar, S., Shit, S., Murmu, N.C., Samanta, P., and Kuila, T., “Activation strategy of MoS2 as HER electrocatalyst through doping-induced lattice strain, band gap engineering, and active crystal plane design”, ACS Applied Materials & Interfaces. 13(1), p. 765-780, 2021
17. Wang, M., Wang, Z., Yu, X., and Guo, Z., “Facile one-step electrodeposition preparation of porous NiMo film as electrocatalyst for hydrogen evolution reaction”, international journal of hydrogen energy. 40(5), p. 2173-2181, 2015
18. Miles, M.H., “Evaluation of electrocatalysts for water electrolysis in alkaline solutions”, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 60(1), p. 89-96, 1975
19. Manazoğlu, M., Hapçı, G., and Orhan, G., “Electrochemical deposition and characterization of Ni-Mo alloys as cathode for alkaline water electrolysis”, Journal of Materials Engineering and Performance. 25(1), p. 130-137, 2016
20. Solmaz, R. and Kardaş, G., “Hydrogen evolution and corrosion performance of NiZn coatings”, Energy Conversion and Management. 48(2), p. 583-591, 2007
21. Shervedani, R.K. and Lasia, A., “Studies of the hydrogen evolution reaction on Ni‐P electrodes”, Journal of the Electrochemical Society. 144(2), p. 511, 1997
22. Xiao, Y., Liu, Y., Tang, Z., Wu, L., Zeng, Y., Xu, Y., and He, Y., “Porous Ni–Cr–Fe alloys as cathode materials for the hydrogen evolution reaction”, RSC advances. 6(56), p. 51096-51105, 2016
23. Lin, J., Chang, T., Yang, J., Chen, Y., and Chuang, C., “Localized electrochemical deposition of micrometer copper columns by pulse plating”, Electrochimica Acta. 55(6), p. 1888-1894, 2010
24. 曾耀田, "以微陽極導引電鍍法製作鎳鉻合金微螺旋及感測一氧化碳用氧化鋅/銅微感測器", in 材料科學與工程研究所. 2021, 國立中央大學: 桃園縣. p. 182.
25. 張翔, "銅鎳合金微結構之微電鍍研究", in 材料科學與工程研究所. 2018, 國立中央大學: 桃園縣. p. 112.
26. 劉謹綸, "以微電鍍法製備三維銅錫介金屬化合物微結構", in 材料科學與工程研究所. 2018, 國立中央大學: 桃園縣. p. 120.
27. Wang, C.-Y., Tseng, Y.-T., Lin, J.-C., Ciou, Y.-J., and Hwang, Y.-R., “Effect of [Zn2+]/[Cu2+] ratio of the bath on the composition and property of Cu–Zn alloy micropillars prepared using microanode-guided electroplating”, Electrochimica Acta. 375, p. 137969, 2021
28. Wang, C.-Y., Lin, J.-C., Chang, Y.-C., Tseng, Y.-T., Ciou, Y.-J., and Hwang, Y.-R., “Fabrication of Cu-Zn Alloy Micropillars by Potentiostatic Localized Electrochemical Deposition”, Journal of The Electrochemical Society. 166(8), p. E252, 2019
29. Tseng, Y.-T., Lin, J.-C., Shian-Ching Jang, J., Tsai, P.-H., Ciou, Y.-J., and Hwang, Y.-R., “Three-Dimensional Amorphous Ni–Cr Alloy Printing by Electrochemical Additive Manufacturing”, ACS Applied Electronic Materials. 2(11), p. 3538-3548, 2020
30. 拉維雅, "On the Fabrication of Three-Dimensional Nickel-Zinc alloys by electroplating and Their Performance of Hydrogen evolution in Alkaline Water Electrolysis", in 應用材料科學國際研究生碩士學位學程. 2020, 國立中央大學: 桃園縣. p. 75.
31. 李盈家, "以微電鍍法析鍍鎳鎢合金微結構並研究其在鹼性溶液電解產氫行為", in 材料科學與工程研究所. 2020, 國立中央大學: 桃園縣. p. 150.
32. Guan, X., "以電鍍法製備鈷鐵鎳合金三維微結構及其特性之研究", in 機械工程學系. 2019, 國立中央大學: 桃園縣. p. 101.
33. Madden, J.D., Lafontaine, S.R., and Hunter, I.W. Fabrication by electrodeposition: building 3D structures and polymer actuators. MHS′95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE.1995
34. El-Giar, E. and Thomson, D. Localized electrochemical plating of interconnectors for microelectronics. IEEE WESCANEX 97 Communications, Power and Computing. Conference Proceedings. IEEE.1997
35. Yeo, S., Choo, J., and Sim, K., “On the effects of ultrasonic vibrations on localized electrochemical deposition”, Journal of micromechanics and microengineering. 12(3), p. 271, 2002
36. Said, R., “Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modelling”, Nanotechnology. 14(5), p. 523, 2003
37. Seol, S.K., Yi, J.M., Jin, X., Kim, C.C., Je, J.H., Tsai, W.L., Hsu, P.C., Hwu, Y., Chen, C.H., Chang, L.W., and Margaritondo, G., “Coherent Microradiology Directly Observes a Critical Cathode-Anode Distance Effect in Localized Electrochemical Deposition”, Electrochemical and Solid-State Letters. 7(9), 2004
38. Seol, S.K., Pyun, A.R., Hwu, Y., Margaritondo, G., and Je, J.H., “Localized Electrochemical Deposition of Copper Monitored Using Real-Time X-ray Microradiography”, Advanced Functional Materials. 15(6), p. 934-937, 2005
39. Seol, S.K., Kim, J.T., Je, J.H., Hwu, Y., and Margaritondo, G., “Fabrication of Freestanding Metallic Micro Hollow Tubes by Template-Free Localized Electrochemical Deposition”, Electrochemical and Solid-State Letters. 10(5), 2007
40. Pané, S., Panagiotopoulou, V., Fusco, S., Pellicer, E., Sort, J., Mochnacki, D., Sivaraman, K., Kratochvil, B., Baró, M., and Nelson, B.J., “The effect of saccharine on the localized electrochemical deposition of Cu-rich Cu–Ni microcolumns”, Electrochemistry communications. 13(9), p. 973-976, 2011
41. Brant, A.M., Sundaram, M.M., and Kamaraj, A.B., “Finite element simulation of localized electrochemical deposition for maskless electrochemical additive manufacturing”, Journal of Manufacturing Science and Engineering. 137(1), 2015
42. Wang, F., Bian, H., and Xiao, Y., “Fabrication of micro-sized copper columns using localized electrochemical deposition with a 20 μm diameter micro anode”, ECS Journal of Solid State Science and Technology. 8(4), p. P223, 2019
43. Wang, F., Wang, F., and He, H., “Parametric electrochemical deposition of controllable morphology of copper micro-columns”, Journal of The Electrochemical Society. 163(10), p. E322, 2016
44. Li, Y., Li, J., and Wang, F. Localized electrochemical deposition of micrometer copper columns as affected by adding sulfuric acid. 2016 17th International Conference on Electronic Packaging Technology (ICEPT). IEEE.2016
45. Wang, F., Hua, B., and Niu, Q., “Fabrication of micro-sized-copper column array through localized electrochemical deposition using 20-μm-diameter micro-anode”, Journal of Solid State Electrochemistry. 26(3), p. 799-808, 2022
46. Chang, T.-K., "微陽極導引電鍍法製作微銅柱及銅柵欄之研究". 2004, National Central University.
47. Lai, G.-Y., "微陽極導引電鍍銅其組織及底部覆蓋範圍之探討". 2006, National Central University.
48. You, R.-w., "單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析". 2001, National Central University.
49. 陳譽升, “鎳微柱電鍍受鍍浴黏度與電阻率之影響”, 2011
50. Yeh, P.-C., "微陽極引導電鍍與監測". 2003, National Central University.
51. 鄭家宏, "以微陽極導引電鍍法製作鎳銅合金微柱", in 機械工程研究所. 2005, 國立中央大學: 桃園市. p. 151.
52. Lin, J.C., Jang, S.B., Lee, D.L., Chen, C.C., Yeh, P.C., Chang, T.K., and Yang, J.H., “Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating”, Journal of Micromechanics and Microengineering. 15(12), p. 2405-2413, 2005
53. Lin, J.C., Chang, T.K., Yang, J.H., Jeng, J.H., Lee, D.L., and Jiang, S.B., “Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement”, Journal of Micromechanics and Microengineering. 19(1), 2009
54. Chang, T.K., Lin, J.C., Yang, J.H., Yeh, P.C., Lee, D.L., and Jiang, S.B., “Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition”, Journal of Micromechanics and Microengineering. 17(11), p. 2336-2343, 2007
55. 楊仁泓, "微陽極導引電鍍法製備微析物之局部電場強度分析". 2009年, 國立中央大學.
56. 黃俊強, "微電鍍法之製程參數對其製備鎳鐵合金微柱之形貌、機械性質與防蝕特性之影響", in 機械工程研究所. 2010, 國立中央大學: 桃園縣. p. 72.
57. Ciou, Y.-J., Hwang, Y.-R., and Lin, J.-C., “Fabrication of Two-Dimensional Microstructures by Using Micro-Anode-Guided Electroplating with Real-Time Image Processing”, ECS Journal of Solid State Science and Technology. 3(7), p. P268-P271, 2014
58. 顧乃華, "以微陽極導引電鍍法製備銅螺旋微米結構與其機械性質分析". 2015年, 國立中央大學.
59. 李昱, "以微電鍍法製備鎳鐵合金三維微結構之研究". 2018年, 國立中央大學.
60. 李盈穀, "以微電鍍法製備鋅銅合金微結構", in 機械工程學系. 2020, 國立中央大學: 桃園縣. p. 89.
61. 李盈家, "以微電鍍法析鍍鎳鎢合金微結構並研究其在鹼性溶液電解產氫行為". 2020年, 國立中央大學.
62. Brenner, A.,Electrodeposition of alloys: practical and specific information,Vol. 2. Academic Press,1963.
63. Brenner, A.,Electrodeposition of alloys: principles and practice, Elsevier,2013.
64. 李亭叡, "奈米鐵鎳低熱膨脹合金之電鍍製程與材料特性分析", in 材料科學研究所. 2008, 國立中山大學: 高雄市. p. 104.
65. 馬浩忠, "磁能譜學對電鍍鎳鐵奈米線之磁性質研究", in 材料科學與工程學系. 2012, 國立交通大學: 新竹市. p. 78.
66. Park, J.-H., Hagio, T., Kamimoto, Y., and Ichino, R., “Electrodeposition of a novel ternary Fe–W–Zn alloy: Tuning corrosion properties of Fe–W based alloys by Zn addition”, Journal of The Electrochemical Society. 167(13), p. 132508, 2020
67. Podlaha, E. and Landolt, D., “Induced codeposition: III. Molybdenum alloys with nickel, cobalt, and iron”, Journal of the Electrochemical Society. 144(5), p. 1672, 1997
68. Sanches, L.S., Domingues, S.H., Carubelli, A., and Mascaro, L.H., “Electrodeposition of Ni-Mo and Fe-Mo alloys from sulfate-citrate acid solutions”, Journal of the Brazilian Chemical Society. 14(4), p. 556-563, 2003
69. Sanches, L.S., Marino, C.B., and Mascaro, L.H., “Investigation of the codeposition of Fe and Mo from sulphate-citrate acid solutions”, Journal of alloys and compounds. 439(1-2), p. 342-345, 2007
70. GONZALEZ, E., PROVAZI, K., CAMPOS, B., ESPINOSA, D., BERNARDES, A., TENÓRIO, J., PIETRELLI, L., BELLOMO, B., FONTANA, D., and MONTEREALI, M., "Electrodeposition of alloys: principles and practice". 1963, New York: Academic Press.
71. Bockris, J.O.M., Conway, B.E., and White, R.E.,Modern aspects of electrochemistry,Vol. 22. Springer Science & Business Media,1992.
72. Podlaha, E. and Landolt, D., “Induced codeposition: I. An experimental investigation of Ni‐Mo alloys”, Journal of the Electrochemical Society. 143(3), p. 885, 1996
73. Podlaha, E. and Landolt, D., “Induced Codeposition: II. A Mathematical Model Describing the Electrodeposition of Ni‐Mo Alloys”, Journal of the Electrochemical Society. 143(3), p. 893, 1996
74. Podlaha, E., Matlosz, M., and Landolt, D., “Electrodeposition of High Mo Content Ni‐Mo Alloys under Forced Convection”, Journal of the Electrochemical Society. 140(10), p. L149, 1993
75. Chassaing, E., Vu Quang, K., and Wiart, R., “Mechanism of nickel-molybdenum alloy electrodeposition in citrate electrolytes”, Journal of Applied Electrochemistry. 19(6), p. 839-844, 1989
76. Marlot, A., Kern, P., and Landolt, D., “Pulse plating of Ni–Mo alloys from Ni-rich electrolytes”, Electrochimica Acta. 48(1), p. 29-36, 2002
77. Beltowska-Lehman, E., Bigos, A., Indyka, P., and Kot, M., “Electrodeposition and characterisation of nanocrystalline Ni–Mo coatings”, Surface and Coatings Technology. 211, p. 67-71, 2012
78. Stepanova, L., Purovskaya, O., Azarko, V., and Sviridov, V., “Peculiarities of Ni-Mo alloys electrodeposition from citrate electrolytes”, VESTSI-AKADEMIIA NAVUK BELARUSI SERYIA KHIMICHNYKH NAVUK, p. 38-43, 1997
79. Donten, M., Cesiulis, H., and Stojek, Z., “Electrodeposition of amorphous/nanocrystalline and polycrystalline Ni–Mo alloys from pyrophosphate baths”, Electrochimica Acta. 50(6), p. 1405-1412, 2005
80. Chassaing, E., Portail, N., Levy, A.-f., and Wang, G., “Characterisation of electrodeposited nanocrystalline Ni–Mo alloys”, Journal of applied electrochemistry. 34(11), p. 1085-1091, 2004
81. Halim, J., Abdel-Karim, R., El-Raghy, S., Nabil, M., and Waheed, A., “Electrodeposition and characterization of nanocrystalline Ni-Mo catalysts for hydrogen production”, Journal of Nanomaterials. 2012, 2012
82. Gotou, M., Arakawa, T., Watanabe, N., Hara, T., Tomita, T., Hashimoto, A., Takanashi, H., and Koiwa, I., “Codeposition of copper and molybdenum by electroplating”, ECS Electrochemistry Letters. 3(6), p. D19, 2014
83. Stepanova, L., Purovskaya, O., and Sviridov, V., “Influence of ammonium ions on chemical and phase composition of Ni-Mo alloy films electrodeposited from citrate electrolytes”, Russian Journal of Applied Chemistry. 73(1), p. 66-70, 2000
84. Navarro-Flores, E., Chong, Z., and Omanovic, S., “Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium”, Journal of Molecular Catalysis A: Chemical. 226(2), p. 179-197, 2005
85. Allahyarzadeh, M., Ashrafi, A., Golgoon, A., and Roozbehani, B., “Effect of pulse plating parameters on the structure and properties of electrodeposited NiMo films”, Materials Chemistry and Physics. 175, p. 215-222, 2016
86. Park, J.-S., Jeong, G.-J., Kim, Y.-J., Kim, K.-J., and Lee, C.-K., “A Study on Corrosion Resistance and Electrical Surface Conductivity of an Electrodeposited Ni-W Thin Film”, Journal of the Korean institute of surface engineering. 44(2), p. 68-73, 2011
87. Eliaz, N. and Gileadi, E., ”Induced codeposition of alloys of tungsten, molybdenum and rhenium with transition metals”, Modern aspects of electrochemistry. 2008, Springer. p. 191-301.
88. Schuh, C.A., “Nanoindentation studies of materials”, Materials today. 9(5), p. 32-40, 2006
89. Li, X. and Bhushan, B., “A review of nanoindentation continuous stiffness measurement technique and its applications”, Materials Characterization. 48(1), p. 11-36, 2002
90. Oliver, W.C. and Pharr, G.M., “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of Materials Research. 7(6), p. 1564-1583, 2011
91. Fischer-Cripps, A.C., “Critical review of analysis and interpretation of nanoindentation test data”, Surface and coatings technology. 200(14-15), p. 4153-4165, 2006
92. 張瑞慶, "奈米壓痕技術與應用", in 中華民國力學學會會訊. 2006年.
93. Gonsalves, C.N. and Hegde, A.C., “Electrochemical water electrolysis using electrodeposited (NiMo) coatings from a low concentration bath”, Chemical Data Collections. 34, p. 100697, 2021
94. Nørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J., Chen, J.G., Pandelov, S., and Stimming, U., “Trends in the exchange current for hydrogen evolution”, Journal of The Electrochemical Society. 152(3), p. J23, 2005
95. Trasatti, S., “Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions”, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 39(1), p. 163-184, 1972
96. Zou, X. and Zhang, Y., “Noble metal-free hydrogen evolution catalysts for water splitting”, Chemical Society Reviews. 44(15), p. 5148-5180, 2015
97. Manazoğlu, M., Hapçı, G., and Orhan, G., “Effect of electrolysis parameters of Ni–Mo alloy on the electrocatalytic activity for hydrogen evaluation and their stability in alkali medium”, Journal of Applied Electrochemistry. 46(2), p. 191-204, 2016
98. Sheng, W., Myint, M., Chen, J.G., and Yan, Y., “Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces”, Energy & Environmental Science. 6(5), p. 1509-1512, 2013
99. Shetty, S., Sadiq, M.M.J., Bhat, D.K., and Hegde, A.C., “Electrodeposition and characterization of Ni-Mo alloy as an electrocatalyst for alkaline water electrolysis”, Journal of Electroanalytical Chemistry. 796, p. 57-65, 2017
100. Vetter, K., “Electrochemical Kinetics: Theoretical and Experimental Aspects, Academic Press”, New York., 1967
101. Murthy, A.P., Theerthagiri, J., and Madhavan, J., “Insights on Tafel constant in the analysis of hydrogen evolution reaction”, The Journal of Physical Chemistry C. 122(42), p. 23943-23949, 2018
102. Alobaid, A., Wang, C., and Adomaitis, R.A., “Mechanism and kinetics of HER and OER on NiFe LDH films in an alkaline electrolyte”, Journal of The Electrochemical Society. 165(15), p. J3395, 2018
103. Doyle, R.L. and Lyons, M.E., ”The oxygen evolution reaction: mechanistic concepts and catalyst design”, Photoelectrochemical solar fuel production. 2016, Springer. p. 41-104.
104. Wang, J., Gao, Y., Kong, H., Kim, J., Choi, S., Ciucci, F., Hao, Y., Yang, S., Shao, Z., and Lim, J., “Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances”, Chemical Society Reviews. 49(24), p. 9154-9196, 2020
105. O’Brien, T.F., Bommaraju, T.V., and Hine, F., ”Overview of the chlor-alkali industry”, Handbook of Chlor-Alkali Technology. 2005, Springer. p. 37-74.
106. Shervedani, R.K., Alinoori, A.H., and Madram, A.R., “Electrocatalytic activities of nickel-phosphorous composite coating reinforced with codeposited graphite carbon for hydrogen evolution reaction in alkaline solution”, J New Mater Electrochem Syst. 11(4), p. 259-265, 2008
107. Raj, I.A. and Vasu, K., “Transition metal-based hydrogen electrodes in alkaline solution—electrocatalysis on nickel based binary alloy coatings”, Journal of applied electrochemistry. 20(1), p. 32-38, 1990
108. Zeng, Y., Li, Z., Ma, M., and Zhou, S., “In situ surface Raman study of the induced codeposition mechanism of Ni–Mo alloys”, Electrochemistry Communications. 2(1), p. 36-38, 2000
109. Bocutti, R., Saeki, M., Florentino, A., Oliveira, C., and Angelo, A., “The hydrogen evolution reaction on codeposited Ni–hydrogen storage intermetallic particles in alkaline medium”, International journal of hydrogen energy. 25(11), p. 1051-1058, 2000
110. Divisek, J., Steffen, B., and Schmitz, H., “Theoretical analysis and evaluation of the operating data of a bipolar water electrolyser”, International journal of hydrogen energy. 19(7), p. 579-586, 1994
111. Hu, W., “Electrocatalytic properties of new electrocatalysts for hydrogen evolution in alkaline water electrolysis”, International Journal of Hydrogen Energy. 25(2), p. 111-118, 2000
112. Melo, R.L., Casciano, P.N., Correia, A.N., and Lima-Neto, P.d., “Characterisation of electrodeposited and heat-treated Ni− Mo− P coatings”, Journal of the Brazilian Chemical Society. 23, p. 328-334, 2012
113. Müller, C.I., Rauscher, T., Schmidt, A., Schubert, T., Weißgärber, T., Kieback, B., and Röntzsch, L., “Electrochemical investigations on amorphous Fe-base alloys for alkaline water electrolysis”, International journal of hydrogen energy. 39(17), p. 8926-8937, 2014
114. Fang, M., Gao, W., Dong, G., Xia, Z., Yip, S., Qin, Y., Qu, Y., and Ho, J.C., “Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions”, Nano Energy. 27, p. 247-254, 2016
115. Han, Q., Cui, S., Pu, N., Chen, J., Liu, K., and Wei, X., “A study on pulse plating amorphous Ni–Mo alloy coating used as HER cathode in alkaline medium”, International Journal of Hydrogen Energy. 35(11), p. 5194-5201, 2010
116. Wang, M., Wang, Z., Guo, Z., and Li, Z., “The enhanced electrocatalytic activity and stability of NiW films electrodeposited under super gravity field for hydrogen evolution reaction”, international journal of hydrogen energy. 36(5), p. 3305-3312, 2011
117. Elias, L., Scott, K., and Hegde, A.C., “Electrolytic synthesis and characterization of electrocatalytic Ni-W alloy”, Journal of Materials Engineering and Performance. 24(11), p. 4182-4191, 2015
118. Hong, S.H., Ahn, S.H., Choi, J., Kim, J.Y., Kim, H.Y., Kim, H.-J., Jang, J.H., Kim, H., and Kim, S.-K., “High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis”, Applied Surface Science. 349, p. 629-635, 2015
119. Benaicha, M., Allam, M., Dakhouche, A., and Hamla, M., “Electrodeposition and characterization of W-rich NiW alloys from citrate electrolyte”, Int. J. Electrochem. Sci. 11(9), p. 7605-7620, 2016
120. Kjartansdóttir, C., Caspersen, M., Egelund, S., and Møller, P., “Electrochemical investigation of surface area effects on PVD Al-Ni as electrocatalyst for alkaline water electrolysis”, Electrochimica Acta. 142, p. 324-335, 2014
121. Lee, S.-h., Kim, J.E., Joo, H., Park, C.-s., Jeong, S.-u., Jung, K., Kim, Y.-h., and Kang, K.-s., “Effect of Plating Variables on Oxygen Evolution Reaction of Ni–Zn–Fe Electrodes for Alkaline Water Electrolysis”, Catalysts. 12(3), p. 346, 2022
122. Santos, M., Da Silva, E.P., Andrade Jr, R., and Dias, J., “NiSn and porous NiZn coatings for water electrolysis”, Electrochimica acta. 37(1), p. 29-32, 1992
123. Sheela, G., Pushpavanam, M., and Pushpavanam, S., “Zinc–nickel alloy electrodeposits for water electrolysis”, International journal of hydrogen energy. 27(6), p. 627-633, 2002
124. Cai, J., Xu, J., Wang, J., Zhang, L., Zhou, H., Zhong, Y., Chen, D., Fan, H., Shao, H., and Zhang, J., “Fabrication of three-dimensional nanoporous nickel films with tunable nanoporosity and their excellent electrocatalytic activities for hydrogen evolution reaction”, International journal of hydrogen energy. 38(2), p. 934-941, 2013
125. Lelevic, A. and Walsh, F.C., “Electrodeposition of NiP alloy coatings: a review”, Surface and Coatings Technology. 369, p. 198-220, 2019
126. Paseka, I., “Evolution of hydrogen and its sorption on remarkable active amorphous smooth Ni P (x) electrodes”, Electrochimica Acta. 40(11), p. 1633-1640, 1995
127. Li, L., Zhang, Y., Deng, S., and Chen, Y., “Effect of ammonium on low-temperature electrodeposition of Ni–P alloys”, Materials Letters. 57(22-23), p. 3444-3448, 2003
128. Wei, Z., Yan, A., Feng, Y., Li, L., Sun, C., Shao, Z., and Shen, P., “Study of hydrogen evolution reaction on Ni–P amorphous alloy in the light of experimental and quantum chemistry”, Electrochemistry communications. 9(11), p. 2709-2715, 2007
129. Nickell, R.A., Zhu, W.H., Payne, R.U., Cahela, D.R., and Tatarchuk, B.J., “Hg/HgO electrode and hydrogen evolution potentials in aqueous sodium hydroxide”, Journal of power sources. 161(2), p. 1217-1224, 2006
130. Kakaei, K., Esrafili, M.D., and Ehsani, A., ”Graphene and anticorrosive properties”, Interface science and technology. 2019, Elsevier. p. 303-337.
131. Li, R., Wang, J., and Xia, T., “Preparation and Modification of Mildly Oxidized Acetylene Black/Molybdenum Disulfide Composites as Electrocatalyst in Hydrogen Evolution Reaction”, Molybdenum Disulfide Composites as Electrocatalyst in Hydrogen Evolution Reaction,
132. Qian, G., Chen, J., Yu, T., Liu, J., Luo, L., and Yin, S., “Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition”, Nano-Micro Letters. 14(1), p. 1-15, 2022
133. Chang, Z., Zhu, L., Zhao, J., Chen, P., Chen, D., and Gao, H., “NiMo/Cu-nanosheets/Ni-foam composite as a high performance electrocatalyst for hydrogen evolution over a wide pH range”, International Journal of Hydrogen Energy. 46(5), p. 3493-3503, 2021
134. Wang, Z., Yang, J., Wang, W., Zhou, F., Zhou, H., Xue, Z., Xiong, C., Yu, Z.-Q., and Wu, Y., “Hollow cobalt-nickel phosphide nanocages for efficient electrochemical overall water splitting”, Science China Materials. 64(4), p. 861-869, 2021
135. El-Maghrabi, H.H., Nada, A.A., Bekheet, M.F., Roualdes, S., Riedel, W., Iatsunskyi, I., Coy, E., Gurlo, A., and Bechelany, M., “Coaxial nanofibers of nickel/gadolinium oxide/nickel oxide as highly effective electrocatalysts for hydrogen evolution reaction”, Journal of Colloid and Interface Science. 587, p. 457-466, 2021
136. MacDonald, J.R., “Impedence Spectroscopy--Emphasizing Solid Materials and Systems”, Wiley-Interscience, John Wiley and Sons, p. 1-346, 1987
137. Kim, H., Park, H., Tran, D.S., and Kim, S.K., “Facile fabrication of amorphous NiMo catalysts for alkaline hydrogen oxidation reaction”, Journal of Industrial and Engineering Chemistry. 94, p. 309-316, 2021
138. Mizushima, I., Tang, P.T., Hansen, H.N., and Somers, M.A., “Development of a new electroplating process for Ni–W alloy deposits”, Electrochimica Acta. 51(5), p. 888-896, 2005
139. Huang, P.-C., Hou, K.-H., Wang, G.-L., Chen, M.-L., and Wang, J.-R., “Corrosion resistance of the Ni-Mo alloy coatings related to coating′s electroplating parameters”, International Journal of Electrochemical Science. 10(6), p. 4972-4984, 2015
140. Chun-Ying, L., Wei-Ti, M., Ming-Der, G., and Hung-Bin, L., “A study on the corrosion and wear behavior of nanocrystalline NiMo electrodeposited coatings”, Surface and Coatings Technology. 366, p. 286-295, 2019
141. Allam, M., Benaicha, M., and Dakhouche, A., “Electrodeposition and characterization of NiMoW alloy as electrode material for hydrogen evolution in alkaline water electrolysis”, international journal of hydrogen energy. 43(6), p. 3394-3405, 2018
142. Mosayebi, S., Rezaei, M., and Mahidashti, Z., “Comparing corrosion behavior of Ni and Ni-Mo electroplated coatings in chloride mediums”, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 594, p. 124654, 2020
143. Liu, J., Pei, Z., Shi, W., Liu, Y., Gong, J., and Sun, C., “Studies on preparation, microstructure, mechanical properties and corrosion resistance of NiMo/micron-sized diamond composite coatings”, Surface and Coatings Technology. 385, p. 125451, 2020
144. Huang, Q. and Lyons, T., “Electrodeposition of rhenium with suppressed hydrogen evolution from water-in-salt electrolyte”, Electrochemistry Communications. 93, p. 53-56, 2018
145. Wang, M., Wang, Z., and Guo, Z., “Electrodeposited free-crack NiW films under super gravity filed: Structure and excellent corrosion property”, Materials Chemistry and Physics. 148(1-2), p. 245-252, 2014
146. Wang, M., Wang, Z., and Guo, Z., “Understanding of the intensified effect of super gravity on hydrogen evolution reaction”, international journal of hydrogen energy. 34(13), p. 5311-5317, 2009
147. Sun, S. and Podlaha, E., “Electrodeposition of Mo-Rich, MoNi alloys from an aqueous electrolyte”, Journal of the Electrochemical Society. 159(2), p. D97, 2011
148. Szczygiel, B. and Laszczynska, A., “Influence of bath concentration and pH on electrodeposition process of ternary Zn-Ni-Mo alloy coatings”, Transactions of the IMF. 92(4), p. 196-202, 2014
149. Sun, S. and Podlaha, E.J., “Electrodeposition of Mo-Rich, MoNi Alloys from an Aqueous Electrolyte”, Journal of The Electrochemical Society. 159, 2011
150. Kim, H., Park, H., Tran, D.S., and Kim, S.-K., “Facile fabrication of amorphous NiMo catalysts for alkaline hydrogen oxidation reaction”, Journal of Industrial and Engineering Chemistry. 94, p. 309-316, 2021
151. Younes, O. and Gileadi, E., “Electroplating of Ni/W alloys I. Ammoniacal citrate baths”, Journal of The Electrochemical Society. 149(2), p. C100-C111, 2002
152. Kim, W.-B., Lee, C.-G., Lee, J.-C., and Seo, C.-Y., “Effect of Current Density on the Crystal Structure of Ni-W Alloys Prepared by Electrodeposition”, Korean Journal of Materials Research. 8(10), p. 898-904, 1998
153. Liu, J., Li, W., Pei, Z., Gong, J., and Sun, C., “Investigations on the structure and properties of nanocrystalline Ni-Mo alloy coatings”, Materials Characterization. 167, p. 110532, 2020
154. Golden, T.D., Tientong, J., and Mohamed, A.M., ”Electrodeposition of Nickel-Molybdenum (Ni-Mo) Alloys for Corrosion Protection in Harsh Environments”, Research Perspectives on Functional Micro-and Nanoscale Coatings. 2016, IGI Global. p. 369-395.
155. Yu, Z.Y., Duan, Y., Feng, X.Y., Yu, X., Gao, M.R., and Yu, S.H., “Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects”, Advanced Materials. 33(31), p. 2007100, 2021
156. Scheepers, F., Stähler, M., Stähler, A., Rauls, E., Müller, M., Carmo, M., and Lehnert, W., “Temperature optimization for improving polymer electrolyte membrane-water electrolysis system efficiency”, Applied Energy. 283, p. 116270, 2021
157. Hu, K., Fang, J., Ai, X., Huang, D., Zhong, Z., Yang, X., and Wang, L., “Comparative study of alkaline water electrolysis, proton exchange membrane water electrolysis and solid oxide electrolysis through multiphysics modeling”, Applied Energy. 312, p. 118788, 2022
158. 游睿為, "單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析". 2001年, 國立中央大學,.
159. 葉柏青, "微陽極導引電鍍與監測". 2003年, 國立中央大學.
160. 張庭綱, "微陽極導引電鍍法製作銅微柱及銅柵欄之研究". 2004年, 國立中央大學.
161. 鄭家宏, "以微陽極導引電鍍法製作鎳銅合金銅微柱". 2005年, 國立中央大學.
162. 賴格源, "微陽極導引電鍍銅其組織及覆蓋範圍之探討". 2006年, 國立中央大學.
163. 黃俊強, "微電鍍法之製程參數對其製備鎳鐵合金微柱特性之影響". 2010, 國立中央大學.
164. 張翔, "銅鎳合金微結構之微電鍍研究". 2018, 國立中央大學.
165. 李昱, "以微電鍍法製備鎳鐵合金三維微結構之研究", in 機械工程學系. 2018, 國立中央大學: 桃園縣. p. 121.
166. 羅元成, "微米尺寸銅鎳合金電阻材料之電鍍與特性研究", in 機械工程學系. 2019, 國立中央大學: 桃園縣. p. 109.
167. 吳冠勳, "以電鍍法製備鈷鐵鎳合金三維微結構及其特性之研究". 2019, 國立中央大學.
168. 許壬瀚, "自含檸檬酸鈉鍍浴中電鍍銅鎳合金微柱並探討 其形貌、組成、構造與性質", in 材料科學與工程研究所. 2021, 國立中央大學: 桃園縣. p. 145.
169. 謝東佑, "自焦磷酸浴中以微陽極導引電鍍製備鎳-鎢合金微柱、微螺旋及其在1.0 M KOH 中電解產氫特性研究", in 材料科學與工程研究所. 2022, 國立中央大學: 桃園縣. p. 188.
170. Zhang, Q., Li, P., Zhou, D., Chang, Z., Kuang, Y., and Sun, X., “Superaerophobic ultrathin Ni–Mo alloy nanosheet array from in situ topotactic reduction for hydrogen evolution reaction”, Small. 13(41), p. 1701648, 2017
171. Zhang, H., Feng, Z., Wang, L., Li, D., and Xing, P., “Bifunctional nanoporous Ni-Zn electrocatalysts with super-aerophobic surface for high-performance hydrazine-assisted hydrogen production”, Nanotechnology. 31(36), p. 365701, 2020
172. Eladgham, E.H., Rodene, D.D., Sarkar, R., Arachchige, I.U., and Gupta, R.B., “Electrocatalytic Activity of Bimetallic Ni–Mo–P Nanocrystals for Hydrogen Evolution Reaction”, ACS Applied Nano Materials. 3(8), p. 8199-8207, 2020
173. Mollamahale, Y.B., Jafari, N., and Hosseini, D., “Electrodeposited Ni-W nanoparticles: Enhanced catalytic activity toward hydrogen evolution reaction in acidic media”, Materials Letters. 213, p. 15-18, 2018
174. Wu, H., Kong, L., Ji, Y., Yan, J., Ding, Y., Li, Y., Lee, S.T., and Liu, S., “Double‐Site Ni–W Nanosheet for Best Alkaline HER Performance at High Current Density> 500 mA cm− 2”, Advanced Materials Interfaces. 6(10), p. 1900308, 2019
175. Tan, Y., Zhuang, R., Yang, G., Tao, X., Chen, H., Ouyang, Y., and Du, Y., “Diffusional behaviors and mechanical properties of Ni-Zn system”, Journal of Alloys and Compounds. 881, p. 160581, 2021
176. Li, M., Wang, H., Zhu, W., Li, W., Wang, C., and Lu, X., “RuNi nanoparticles embedded in N‐doped carbon nanofibers as a robust bifunctional catalyst for efficient overall water splitting”, Advanced Science. 7(2), p. 1901833, 2020
177. Solmaz, R., Döner, A., and Kardaş, G., “Electrochemical deposition and characterization of NiCu coatings as cathode materials for hydrogen evolution reaction”, Electrochemistry communications. 10(12), p. 1909-1911, 2008
178. Raj, I.A., “Nickel based composite electrolytic surface coatings as electrocatalysts for the cathodes in the energy efficient industrial production of hydrogen from alkaline water electrolytic cells”, International journal of hydrogen energy. 17(6), p. 413-421, 1992
179. 彭文屹, 朱峰, 邓晓华, 陶钧, and 周颖钰, “电沉积工艺参数对镍-钼-锌三元合金电极析氢催化性能的影响”, 表面技术. 49(1), p. 173-179, 2020
180. Xu, J., Li, L., Tang, J., Dai, L., Li, X., Ye, Z., and Luo, J., “Powder metallurgy synthesis of porous NiMo alloys as efficient electrocatalysts to enhance the hydrogen evolution reaction”, Journal of Alloys and Compounds. 865, p. 158901, 2021
181. Zhang, D. and Ashraf, M.A., “Electrochemical fabrication of Ni–Mo nanostars with Pt-like catalytic activity for both electrochemical hydrogen and oxygen evolution reactions”, International Journal of Hydrogen Energy. 45(55), p. 30533-30546, 2020
182. Faid, A.Y., Oyarce Barnett, A., Seland, F., and Sunde, S., “Highly active nickel-based catalyst for hydrogen evolution in anion exchange membrane electrolysis”, Catalysts. 8(12), p. 614, 2018
183. Golgovici, F., Pumnea, A., Petica, A., Manea, A.C., Brincoveanu, O., Enachescu, M., and Anicai, L., “Ni–Mo alloy nanostructures as cathodic materials for hydrogen evolution reaction during seawater electrolysis”, Chemical Papers. 72(8), p. 1889-1903, 2018
184. Cornell, A. and Simonsson, D., “Ruthenium dioxide as cathode material for hydrogen evolution in hydroxide and chlorate solutions”, Journal of The Electrochemical Society. 140(11), p. 3123, 1993
185. Huot, J.Y., Trudeau, M., and Schulz, R., “Low hydrogen overpotential nanocrystalline Ni‐Mo cathodes for alkaline water electrolysis”, Journal of The Electrochemical Society. 138(5), p. 1316, 1991
186. Chen, L. and Lasia, A., “Study of the kinetics of hydrogen evolution reaction on nickel‐zinc alloy electrodes”, Journal of The Electrochemical Society. 138(11), p. 3321, 1991
指導教授 林景崎(Jing-Chie Lin) 審核日期 2022-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明