博碩士論文 109323059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.145.44.174
姓名 鄭安傑(An-Jie Jheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 放電複合超音波輔助電化學加工製備微圓柱形陣列電極之研究
(A Study on Fabrication of Micro-Cylindrical Array Electrodes by Electrical Discharge Machining combined with Ultrasonic Assisted Electrochemical Machining)
相關論文
★ 電泳沉積輔助拋光於SUJ2軸承鋼加工特性之研究★ 碳化矽電泳拋光矽晶圓表面粗糙度之研究
★ 超音波輔助添加導電粉末於放電加工鐵基金屬玻璃之研究★ 超音波輔助液中磨削鐵基金屬玻璃之研究
★ 脈衝複合偏壓電化學放電加工石英晶圓之研究★ 超音波振動輔助電化學放電加工石英晶圓陣列微孔之研究
★ 超音波輔助電化學留心加工矩槽圓柱構造之研究★ 快速塑性成型(QPF)製程的精準度探討
★ 利用灰色關聯分析法探究線切割放電於SKD61加工之最佳化參數★ 超音波輔助微電化學鑽孔鎳基合金加工研究
★ 超音波輔助添加碳化矽粉末於放電加工模具鋼SKD61之研究★ Inconel 718 鎳基超合金異形電極微孔放電加工之研究
★ 實驗分析研究應用於減低數據中心伺服器硬碟之結構傳遞振動★ 超音波輔助電化學加工微孔陣列之研究
★ 超音波輔助磨削AGC玻璃加工之研究★ Inconel718鎳基超合金添加石墨烯粉末 微孔放電加工之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-25以後開放)
摘要(中) 當採用線切割放電加工製備之陣列電極進行電化學製備微圓柱形陣列電極時,由於無法採用旋轉多個電極或設計電極內流道等方法來更新電解液,難以加工出尺寸精度良好之微圓柱形陣列電極,為了克服前述各困難點,本論文設計一新型向上噴流式電解液供給治具與超音波振動微陣列電極,並在加工過程中,於另一銅電極之陣列孔內往復移動微陣列電極,進行電化學製備微圓柱形陣列電極,並探討加工時間、工作電壓、脈衝休止時間與超音波功率等級等不同加工參數對電極之整體形貌、極針平均直徑、整體平均直徑、整體直徑全距、極針平均消耗長、整體平均消耗長、整體消耗長全距及整體直徑差等各種加工特性之影響。
實驗結果顯示,採用向上噴流式電解液供給型式相較於相較於傳統向下噴流式電解液供給型式,能得到更高之電解液流速;且微陣列電極行往復運動可有效減少電場尖端效應之影響,而超音波振動會產生泵吸作用與空蝕作用,促進電解液更新並排除電化學反應物,透過上述方法可均勻化加工區域電場,加速電解液更新並快速排除加工區域中的反應熱與電化學反應物,且相較於僅使用向上噴流輔助或超音波輔助,可以得到較佳之電極形貌與較小電極平均直徑。當採用本研究最佳實驗參數組合為加工時間7 s、工作電壓9 V、脈衝休止時間50 us及超音波功率等級Level 10時,可得到最佳電極平均直徑61.3 um、電極平均消耗長122.3 um與電極直徑差5.4 um,且能有效改善電極整體形貌。
摘要(英) When the array electrodes that are fabricated by wire electrical discharge machining used to fabricate the micro-cylindrical array electrodes by electrochemical machining, the electrolyte cannot be renewed by rotating multiple electrodes or designing the flow channels in the electrodes. This makes it difficult to process micro-cylindrical array electrodes with good electrode morphology and accuracy. To overcome the aforementioned difficulties, in this study, a new type of upward jet electrolyte supply fixture was designed. In the design, ultrasonic vibration-assisted microarray electrodes and microarray electrodes perform a reciprocating motion in the array hole of another copper electrode during the processing to conduct electrochemical fabricate micro-cylindrical array electrodes. The various machining parameters, such as machining time, working voltage, pulse off time, power of ultrasonic vibration, and effect on the various processing characteristics, were discussed, including electrode of morphology, average diameter, average diameter of electrode, average diameter range, average consumption length, average consumption of electrode, average consumption range, and diameter difference.
The experimental results show that the upward jet electrolyte supply type could obtain a higher electrolyte flow rate compared with the traditional downward jet electrolyte supply type. Further, the reciprocating motion of the microarray electrode could effectively reduce the influence of the tip effect of the electric field, and the ultrasonic vibration would produce pumping and cavitation effects to promote electrolyte renewal and remove electrolysis products. Through these above methods, the design will homogenize the electric field in the processing area, accelerate the electrolyte renewal, and quickly remove the reaction heat and electrolysis products in the processing area. Using this approach, compared to only upward jet flow assistance or ultrasonic vibration assistance independently, better electrode morphology and smaller average electrode diameter could be obtained. When the optimal combination of experimental parameters was a machining time of 7 s, working voltage of 9 V, pulse off time of 50 us, and power of ultrasonic vibration of Level 10, this resulted in an optimal average electrode diameter of 61.3 um, electrode consumption length of 122.3 um, and difference diameter of 5.4 um. As such, the proposed design can effectively improve the overall morphology of the electrode.
關鍵字(中) ★ 向上供給式電化學加工
★ 微圓柱形陣列電極
★ 往復移動
★ 超音波振動輔助
關鍵字(英) ★ Upward jet Electrochemical Machining
★ Micro-Cylindrical Array Electrodes
★ Reciprocating Movement
★ Ultrasonic-Assisted Vibration
論文目次 摘 要 i
Abstract ii
目 錄 v
圖目錄 ix
表目錄 xiv
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機及目的 3
1-3 文獻回顧 5
1-4 論文架構 10
第二章 實驗基礎原理 11
2-1 電化學加工基礎理論 11
2-1-1 電化學反應機制 11
2-1-2 法拉第電解定律(Faraday’s Laws of Electrolysis) 12
2-1-3 電化學加工速率 13
2-1-4 平衡間隙 14
2-1-5 歐姆定律(Ohm’s Law) 14
2-1-6 電極電位-金屬與溶液界面雙電層理論(Electrical Double Layer Theory) 15
2-1-7 陽極極化曲線及其特徵 16
2-1-8 電流密度與電流效率 18
2-1-9 脈衝占空比 19
2-2 超音波原理 20
2-2-1 泵吸作用(Pumping Effect) 20
2-2-2 空蝕作用(Cavitation) 20
2-2-3 超音波振動電極之運動分析 21
2-3氣泡影響電化學加工之理論(氣泡與導電度關係理論) 24
2-3-1 體積分率(Volume Fraction) 24
2-3-2 導電度(Electrical Conductivity) 24
第三章 實驗設備與材料 26
3-1 實驗簡介 26
3-2 實驗設備 27
3-2-1 電化學加工機 27
3-2-2 去離子水系統 28
3-2-3 電子天平 29
3-2-4 電磁式加熱攪拌器 30
3-2-5 線切割放電加工機 31
3-2-6 CNC高速雕銑機 31
3-2-7 高精度四軸CNC微放電加工機 32
3-2-8 超音波主軸與發振器 33
3-2-9 超音波振幅量刀器 34
3-2-10 直流脈衝電源供應器 34
3-2-11 示波器 35
3-2-12 超音波洗淨機 35
3-2-13 顯微影像量測系統 36
3-2-14 立體電子顯微鏡 37
3-2-15 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 37
3-3 實驗材料 38
3-3-1 陣列孔洞銅片 38
3-3-2 HSS矽鋼片 38
3-3-3 一體式方形陣列電極 39
3-3-4 電解液 40
3-4 實驗流程與方法 41
3-4-1 電解液調配 43
3-4-2 一體式方形陣列電極準備 43
3-4-3 具陣列孔洞刀具電極製作 44
3-4-4 超音波振幅量測 44
3-4-5 實驗架設參數設定 46
3-4-6 超音波振動輔助電化學加工製備微圓柱形陣列電極之加工流程 47
3-4-7 實驗結果量測與觀察 49
3-4-7-1 微圓柱形陣列電極量測 49
3-4-7-2 電極極針平均直徑 (Average Diameter) 49
3-4-7-3 電極整體平均直徑與全距(Average Diameter and Range of Electrode) 50
3-4-7-4電極極針平均消耗長(Average Consumption Length) 51
3-4-7-5電極整體消耗長與全距 (Consumption Length and Range of Electrode) 52
3-4-7-6電極整體直徑差 (Diameter Difference) 52
第四章 結果與討論 55
4-1 COMSOL加工區域電場分析 55
4-2 CFD加工區域流場與流速分析 56
4-3 不同輔助方法(向下噴流、向下噴流與超音波複合、向上噴流、向上噴流與超音波複合)對電化學製備微圓柱形陣列電極之影響 58
4-4 加工時間對電化學製備微圓柱形陣列電極之影響 67
4-5工作電壓對電化學製備微圓柱形陣列電極之影響 75
4-6 脈衝休止時間對電化學製備微圓柱形陣列電極之影響 83
4-7 超音波功率等級對電化學製備微圓柱形陣列電極之影響 92
4-8 陣列微孔加工實驗 105
第五章 結論 109
未來展望 113
參考文獻 114
參考文獻 [1] H.P. Tsui, J.C. Hung, J.C. You, and B.H. Yan, "Improvement of Electrochemical Microdrilling Accuracy Using Helical Tool," Materials and Manufacturing Processes, vol. 23, no. 5, pp. 499-505, 2008.
[2] J.F.Wilson, "Practice and theory of electrochemical machining,"Journal of Applied Electrochemistry, Vol. 7, pp.1-29, 1971.
[3] R. Schuster, "ELectrochemical Micromachining," Science, vol. 289, pp. 98-101, 2000.
[4] B. Bhattacharyya, " Electrochemical micro-machining new possibilities for micro-manufacturing.," Materials Processing Techmology, vol. 113, pp. 301-305, 2001.
[5] B. Bhattacharyya, J. Munda, and M. Malapati, "Advancement in electrochemical micro-machining," International Journal of Machine Tools and Manufacture, vol. 44, no. 15, pp. 1577-1589, 2004.
[6] K. P. Rajurkar et al., "Micro and Nano Machining by Electro-Physical and Chemical Processes," CIRP Annals, vol. 55, no. 2, pp. 643-666, 2006.
[7] 朱樹敏, "電化學加工技術," 化學工業出版社,北京, 2006.
[8] F.T. Weng, "Study of the Batch Production of Micro Parts Using the EDM Process," Advanced manufacturing Technology, vol. 19, pp. 266-270, 2002.
[9] W. Zeng, "Micro-Electrode Array and Micro-Hole Array Fabrication.", Nanomaterials and Biostructures," Nanomaterials and Biostructures, vol. 7, pp. 755-761, 2012.
[10] J. Arab, P. Adhale, D. K. Mishra, and P. Dixit, "Micro array hole formation in glass using electrochemical discharge machining," Procedia Manufacturing, vol. 34, pp. 349-354, 2019.
[11] B. H. Kim, B. J. Park, and C. N. Chu, "Fabrication of multiple electrodes by reverse EDM and their application in micro ECM," Journal of Micromechanics and Microengineering, vol. 16, no. 4, pp. 843-850, 2006.
[12] Y.L. Hwang, C.L. Kuo, and S.F. Hwang, "Fabrication of a micro-pin array with high density and high hardness by combining mechanical peck-drilling and reverse-EDM," Journal of Materials Processing Technology, vol. 210, no. 9, pp. 1103-1130, 2010.
[13] A. K. Das and P. Saha, "Analysis on fabrication of micro-tools by micro-electrochemical machining process," International Journal of Nanomanufacturing, vol. 9, no. 1, pp.66-76, 2013.
[14] V. K. Jain, A. S. Chauhan, A. Thakur, and A. Sidpara, "Fabrications of Micro Tools and Micro Patterns by Electrochemical Micromachining and Some Investigation into Overpotential," Journal of Advanced Manufacturing Systems, vol. 12, no. 02, pp. 85-106, 2014.
[15] T.H. Duong and H.C. Kim, "Electrochemical etching technique for tungsten electrodes with controllable profiles for micro-electrical discharge machining," International Journal of Precision Engineering and Manufacturing, vol. 16, no. 6, pp. 1053-1060, 2015.
[16] H. Zhang, S. Ao, W. Liu, Z. Luo, W. Niu, and K. Guo, "Electrochemical micro-machining of high aspect ratio micro-tools using quasi-solid electrolyte," The International Journal of Advanced Manufacturing Technology, vol. 91, no. 9-12, pp. 2965-2973, 2017.
[17] S. Ao et al., "Electrochemical micro-machining of high aspect ratio micro-tools with a reverse conical shape tip using electrolyte liquid membrane," The International Journal of Advanced Manufacturing Technology, vol. 105, no. 1-4, pp. 1447-1455, 2019.
[18] M. H. Wang and D. Zhu, "Fabrication of multiple electrodes and their application for micro-holes array in ECM," The International Journal of Advanced Manufacturing Technology, vol. 41, no. 1-2, pp. 42-47, 2008.
[19] M. Wang, Z. Bao, X. Wang, and X. Xu, "Fabrication of disk microelectrode arrays and their application to micro-hole drilling using electrochemical micromachining," Precision Engineering, vol. 46, pp. 184-192, 2016.
[20] P. S. Pa, "Design of effective plate-shape electrode in ultrasonic electrochemical finishing," The International Journal of Advanced Manufacturing Technology, vol. 34, no. 1-2, pp. 70-78, 2006.
[21] M.-S. Han, B.-K. Min, and S. J. Lee, "Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte," Journal of Micromechanics and Microengineering, vol. 19, no. 6, pp. 952-958, 2009.
[22] J. J. Maurer, J. J. Mallett, J. L. Hudson, S. E. Fick, T. P. Moffat, and G. A. Shaw, "Electrochemical micromachining of Hastelloy B-2 with ultrashort voltage pulses," Electrochimica Acta, vol. 55, no. 3, pp. 952-958, 2010.
[23] B. Ghoshal and B. Bhattacharyya, "Influence of vibration on micro-tool fabrication by electrochemical machining," International Journal of Machine Tools and Manufacture, vol. 64, pp. 49-59, 2013.
[24] A. Rebschläger, R. Kollmannsperger, and D. Bähre, "Video based Process Observations of the Pulse Electrochemical Machining Process at High Current Densities and Small Gaps," Procedia CIRP, vol. 14, pp. 418-423, 2014.
[25] A. Ruszaj, "Some aspects of the electrochemical machining process supported by electrode ultrasonic vibrations optimization.," Engineering Manufature, vol. 217, pp.1365-1371, 2015.
[26] F. Xiaolong, L. Peng, Z. Yongbin, and Z. Di, "Research on Multiple Wires Electrochemical Micromachining with Ultra-Short Voltage Pulses," Procedia CIRP, vol. 42, pp. 423-427, 2016.
[27] P. Z. Yang, "Fabrication of tungsten carbide micro fins by sliding_ECM.", International Conference on Mechanical and Aerospace Engineering, pp. 136-139, 2017.
[28] H. He, Y. Zeng, Y. Yao, and N. Qu, "Improving machining efficiency in wire electrochemical micromachining of array microstructures using axial vibration-assisted multi-wire electrodes," Journal of Manufacturing Processes, vol. 25, pp. 452-460, 2017.
[29] X. L. Fang, X. H. Zou, M. Chen, and D. Zhu, "Study on wire electrochemical machining assisted with large-amplitude vibrations of ribbed wire electrodes," CIRP Annals, vol. 66, no. 1, pp. 205-208, 2017.
[30] X. Jiang, J. Liu, D. Zhu, M. Wang, and N. Qu, "Research on Stagger Coupling Mode of Pulse Duration and Tool Vibration in Electrochemical Machining," Applied Sciences, vol. 8, no. 8, pp.1296, 2018.
[31] T. Koyano, A. Hosokawa, T. Takahashi, and T. Ueda, "One-process surface texturing of a large area by electrochemical machining with short voltage pulses," CIRP Annals, vol. 68, no. 1, pp. 181-184, 2019.
[32] T. Yang, Y. Zeng, and Y. Hang, "Workpiece reciprocating movement aided wire electrochemical machining using a tube electrode with an array of holes," Journal of Materials Processing Technology, vol. 271, pp. 634-644, 2019.
[33] H. Wang, Z. Chen, Y. Chen, M. Xie, and L. Hua, "Mechanism study of bubble removal in narrow viscous fluid by using ultrasonic vibration," Japanese Journal of Applied Physics, vol. 58, no. 11,115503, 2019.
[34] X. Fang, "Fabrication of a Large-aspect-ratio Single-thread Helical Electrode using Multiple Wire Electrochemical Micromachining," International Journal of Electrochemical Science, pp. 7796-7808, 2020.
[35] 沈哲墉, "超音波振動超音波輔助電化學加工微孔陣列之研究," 國立中央大學, 2020.
[36] T. Yang, X. Fang, Y. Hang, Z. Xu, and Y. Zeng, "Workpiece vibration in feed direction assisted electrochemical cutting using tube electrode with inclined holes," The International Journal of Advanced Manufacturing Technology, vol. 116, no. 7-8, pp. 2651-2660, 2021.
[37] J. Xue, B. Dong, and Y. Zhao, "Significance of waveform design to achieve bipolar electrochemical jet machining of passivating material via regulation of electrode reaction kinetics," International Journal of Machine Tools and Manufacture, vol. 177,103886, 2022.
[38] T. Shu, Y. Liu, K. Wang, T. Peng, and W. Guan, "Ultrasonic vibration-aided electrochemical drill-grinding of SLM-printed Hastelloy X based on analysis of its electrochemical behavior," Electrochemistry Communications, vol. 135,107208, 2022.
[39] 黃俊曄, "放電與超音波振動複合加工添加TIC及SIC粉末對AL-Zn-Mg系合金加工特性之影響," 國立中央大學, 2000.
[40] R. D. Z. J. F. Thorpe " “Theoretical Analysis of the Equilibrium Sinking of Shallow, Axially Symmetric, Cavities by Electrochemical Machining” " Electrochemical Society Princeton,vol.8, pp. 1-39 1971.
指導教授 崔海平(Hai-Ping Tsui) 審核日期 2022-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明