博碩士論文 109323117 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.190.152.38
姓名 林昱銓(Yu-Chuan LIN)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 擾動輔助EMD演算法在穿戴式嵌入式裝置中MCU的即時運算
(Real-time computation of disturbance-assisted EMD algorithms in an MCU of wearable embedded system)
相關論文
★ 二十一點遊戲之正確期望值模型:以遞迴之方式實行隨機訊號處理★ 擾動輔助經驗模態分解之邊界效應的理論與數值分析
★ 基於加速度計的高精度步數演算法★ 基於加速度計低功耗精確量測步數演算法在穿戴式裝置的實現
★ 經驗模態分解局部性之近場性質的一些證明★ 總體相位經驗模態分解
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-31以後開放)
摘要(中) 經驗模態分解是一種自適性的訊號拆解方法。其拆解訊號的基底函數取決於訊號本身,因此常被應用於非線性與非穩態的生理訊號上。訊號可因此被解構成數個具有物理意義的本質模態函數(IMF)並加以分析。
經驗模態分解演算法在輸出固定數量之本質模態函數時,其計算複雜度雖為O(n),但記憶體複雜度與傳統時頻分析如傅立葉轉換、小波轉換等相比還是相對大。因此如將其應用在記憶體有限的穿戴式嵌入式裝置中即時運算時,訊號的輸入長度會被限制,導致其無法萃取出有物理意義的低頻本質模態函數。
因此本研究將以另類的滑移視窗演算法,在不增加其計算複雜度下對經驗模態分解演算法的記憶體複雜度最佳化。並且證明該滑移視窗演算法的計算結果與原始經驗模態分解演算法一致,使記憶體複雜度得以由(13+n_IMF)n降至(2+n_out)n。
除此之外,由於嵌入式系統取樣時所產生的雜訊會使經驗模態分解的結果產生模態混合。為了解決此問題,需使用擾動輔助的經驗模態分解演算法如總體經驗模態分解法、互補總體經驗模態分解法與均相經驗模態分解等。因此本研究將應用低記憶體的經驗模態分解到上述之擾動輔助經驗模態分解中,並於穿戴式嵌入式裝置即時運算以驗證其計算結果與時間。
摘要(英) Empirical mode decomposition (EMD) is an adaptive signal decomposition method. The basis function of the empirical mode decomposition depends on the input signal, so it is often applied to nonlinear and nonstationary biomedical signals.
When the empirical mode decomposition algorithm outputs a fixed number of intrinsic mode functions (IMF), its computational complexity is O(n). However, the memory complexity is larger than traditional time-frequency analysis such as Fourier transform and wavelet transform. Therefore, When EMD is applied to real-time computing in a memory-limited wearable embedded device, the length of input signal will be limited. As a result, EMD cannot extract the low-frequency intrinsic mode function.
Therefore, this research will propose an alternative sliding window algorithm to optimize the memory complexity of EMD algorithm without increasing its computational complexity. The memory complexity can be reduced from (13+n_IMF)n to (2+n_out)n. And it will prove that the calculation result of the sliding window algorithm is consistent with the original empirical mode decomposition algorithm.
In addition, due to the sampling noise of embedded system, the EMD will cause mode-mixing in IMF. In order to solve this problem, the disturbance-assisted empirical mode decomposition algorithms such as ensemble empirical mode decomposition, complementary ensemble empirical mode decomposition and uniform phase empirical mode decomposition are used. In this study, the low memory empirical mode decomposition is applied to disturbance-assisted empirical mode decomposition, and then we will verify the results and run-time in the wearable embedded devices.
關鍵字(中) ★ 經驗模態分解
★ 記憶體複雜度
★ 嵌入式系統
★ 即時運算
關鍵字(英) ★ EMD
★ memory complexity
★ embedded system
★ real-time computing
論文目次 摘 要 i
Abstract ii
誌 謝 iv
目 錄 v
圖 目 錄 vi
表 目 錄 vii
一、 緒論 - 1 -
1-1 研究動機 - 1 -
1-2 文章架構 - 1 -
二、 經驗模態分解演算法 - 2 -
2-1 經驗模態分解演算法 - 2 -
2-2 計算複雜度與記憶體複雜度 - 3 -
2-3 擾動輔助的經驗模態分解 - 6 -
三、 低記憶體經驗模態分解演算法 - 8 -
3-1 y的局部性質與邊界誤差 - 9 -
3-2 浮點數誤差 - 11 -
3-3 演算法與記憶體複雜度 - 14 -
3-4 應用於擾動輔助的經驗模態分解 - 17 -
四、 穿戴式嵌入式裝置 - 18 -
4-1 硬體架構 - 18 -
4-2 韌體架構 - 20 -
4-2-1邊緣計算模式 - 20 -
4-2-2實驗模式 - 21 -
4-3自適應相位數的均相模態分解 - 21 -
4-4即時運算效率 - 21 -
4-5 實驗結果 - 22 -
五、 結論及未來展望 - 28 -
5-1 結論 - 28 -
5-2 未來展望 - 28 -
參考文獻 [1] N. E. Huang et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A, Vol 454, No 1971, pp. 903-995, March 1998.
[2] Z. Wu, and N. E. Huang, “Ensemble empirical mode decomposition: a noise-assisted data analysis method,” Adv. Adap. Data Anal., vol. 1, no. 01, pp. 1-41, 2009.
[3] J.-R. Yeh, J.-S. Shieh, and N. E. Huang, “Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method,” Advances in adaptive data analysis, vol. 2, no. 02, pp. 135-156, 2010.
[4] Wang, Yung-Hung, Kun Hu, and Men-Tzung Lo. "Uniform phase empirical mode decomposition: An optimal hybridization of masking signal and ensemble approaches." IEEE Access 6 (2018): 34819-34833.
[5] X. Y. Hu, S. L. Peng, and W. L. Hwang, “EMD Revisited: A New Understanding of the Envelope and Resolving the Mode-Mixing Problem in AM-FM Signals,” IEEE Trans. Signal Process., vol. 60, no. 3, pp. 1075-1086, Mar, 2012.
[6] R. Deering, and J. F. Kaiser, "The use of a masking signal to improve empirical mode decomposition." in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Philadelphia, PA, Mar, 2005, pp. iv/485-iv/488 Vol. 4.
[7] M. E. Torres, M. Colominas, G. Schlotthauer, and P. Flandrin, "A complete ensemble empirical mode decomposition with adaptive noise." in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Prague, Czech Republic, May, 2011, pp. 4144-4147.
[8] Y. H. Wang, C. H. Yeh, H. W. V. Young, K. Hu, and M. T. Lo, “On the computational complexity of the empirical mode decomposition algorithm,” Physica A, vol. 400, pp. 159-167, Apr 15, 2014.
[9] C. A. Fletcher, Computational techniques for fluid dynamics 2: Specific techniques for different flow categories: Springer Science & Business Media, 2012.
[10] Huang, Norden E., Zheng Shen, and Steven R. Long. "A new view of nonlinear water waves: the Hilbert spectrum." Annual review of fluid mechanics 31.1 (1999): 417-457.
[11] Wang, Yung-Hung, and Shao-Ho Cheng. "Boundary Effects for EMD-Based Algorithms." IEEE Signal Processing Letters (2022).
[12] P.-Y. Chen, Y.-C. Lai, and J.-Y. Zheng, “Hardware design and implementation for empirical mode decomposition,” IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3686-3694, 2016.
[13] [R34]G. Rilling, P. Flandrin, and P. Goncalves, "On empirical mode decomposition and its algorithms." IEEE-EURASIP workshop on nonlinear signal and image processing, IEEER Grado, pp. 8-11, 2003 .
[14] [R35]R. Faltermeier, A. Zeiler, I. R. Keck et al., "Sliding empirical mode decomposition." The 2010 international joint conference on neural networks (IJCNN), IEEE, pp. 1-8, 2010
[15] [R36]W.-C. Shen, H.-I. Jen, and A.-Y. Wu, “New Ping-Pong scheduling for low-latency EMD engine design in Hilbert–Huang Transform,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 8, pp. 532-536, 2013.
[16] R. Fontugne, P. Borgnat, and P. Flandrin, "Online empirical mode decomposition." 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 4306-4310, 2017.
[17] Y. -H. Wang, I. -Y. Chen, H. Chiueh and S. -F. Liang, "A Low-Cost Implementation of Sample Entropy in Wearable Embedded Systems: An Example of Online Analysis for Sleep EEG," in IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-12, 2021, Art no. 4002412, doi: 10.1109/TIM.2020.3047488.
[18] Joseph, Chacko N., et al. "Slow breathing improves arterial baroreflex sensitivity and decreases blood pressure in essential hypertension." hypertension 46.4 (2005): 714-718.
[19] Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P. C., Mark, R., ... & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation [Online]. 101 (23), pp. e215–e220.
[20] Pan, Jiapu, and Willis J. Tompkins. "A real-time QRS detection algorithm." IEEE transactions on biomedical engineering 3 (1985): 230-236.
[21] T.-T. Tran, V.-T. Pham, C. Lin et al., “Empirical mode decomposition and monogenic signal-based approach for quantification of myocardial infarction from mr images,” IEEE journal of biomedical and health informatics, vol. 23, no. 2, pp. 731-743, 2018.
[22] S. Asano, T. Maruyama, and Y. Yamaguchi, "Performance comparison of FPGA, GPU and CPU in image processing." 2009 international conference on field programmable logic and applications, IEEE, pp. 126-131, 2009.
[23] T. Mujahid, A. U. Rahman, and M. M. Khan, “GPU-accelerated multivariate empirical mode decomposition for massive neural data processing,” IEEE Access, vol. 5, pp. 8691-8701, 2017.
[24] D. Chen, D. Li, M. Xiong et al., “GPGPU-aided ensemble empirical-mode decomposition for EEG analysis during anesthesia,” IEEE Transactions on Information Technology in Biomedicine, vol. 14, no. 6, pp. 1417-1427, 2010.
指導教授 王淵弘 審核日期 2022-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明