博碩士論文 109323010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.118.193.232
姓名 楊昀承(Yun-Cheng Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 兼具齒面拓樸修整及磨紋控制之創成磨齒技術開發
(Technology Development of Generating Gear Grinding with Considering Both Topology Modification and Grinding Texture Control)
相關論文
★ 應用調諧顆粒阻尼器於迴轉式壓縮機振動抑制之研究★ 應用離散元素法與多體動力學於齒輪傳動系統動力分析模型之建立
★ 不同氣體負載下雙螺桿壓縮機動力響應及振動頻譜特徵之預測★ 新型魯氏真空泵轉子齒形之參數化設計及性能評估
★ 以CNC內珩齒機進行螺旋齒輪齒面拓樸修整之研究★ 雙螺桿壓縮機變導程轉子齒間法向間隙之數值計算方法及其三維幾何模型驗證
★ 不同工作條件下冷媒雙螺桿壓縮機之轉子受力分析及動載響應預測★ 應用多體動力學及離散元素法於具阻尼顆粒齒輪及軸承系統抑振之研究
★ 具齒廓修形內嚙合非圓形齒輪創成之方法建立與其傳動誤差分析★ 雙螺桿壓縮機於CFD仿真模擬之三維幾何簡化方法建立
★ 航空發動機齒輪箱傳動系統之強度分析與改善★ 電動車差速齒輪傳動系統之動載分析與性能評估
★ 指狀銑刀安裝偏差對真空泵螺桿轉子加工精度影響之研究★ 以CNC內珩齒機加工具鼓形之錐狀齒輪之研究
★ 應用阻尼顆粒於旋轉機械之振動抑制及動平衡設計★ 考量氣體負載下迴轉式壓縮機動態負載分析模型之建立
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 既有的創成磨齒中運動通常會產生規則且平行的齒面磨削紋理,相比於由珩齒產生的不規則紋理,齒輪嚙合時容易引起更高的單頻噪音。本研究於CNC創成磨齒機中考量砂輪修整和齒輪磨削運動,提出兼具齒面修型與生成傾斜方向磨紋的控制方法。透過砂輪和工作齒輪軸之間的額外安裝角控制磨削紋理,由此角度變化所引發的齒面偏差可通過加工軸的附加運動得到修正,附加運動函數運用敏感度矩陣結合Levenberg-Marquardt(LM)演算法求解。數值範例中,分別研究了軸向進給速度及磨料尺寸對齒面紋理及其平均粗糙度的影響,隨後探討額外安裝角對磨紋偏轉方向之影響。範例中於鼓形齒面上產生斜向且不規則之磨削紋理,並且齒面的最大法向誤差量為0.20 µm,符合加工精度需求,證明所提方法合理性和有效性。
摘要(英) Natural motion in generating gear grinding often produces regular and mutually-parallel gear grinding texture, which induces higher pure-tone gear meshing noise than that with an irregular texture generated by gear honing. This study presents a generation method of irregular and oblique grinding texture on modified gear tooth flanks considering both dressing and grinding motions in a CNC generating gear grinder. The grinding texture is controllable via an additional installation angle between the grinding wheel and the work gear axes. Meanwhile, the gear tooth flank deviation caused by this variation is corrected by additional motions of machining axes. The sensitivity matrix (SM) combined with the Levenberg-Marquardt (LM) algorithm is employed to determine the additional motion functions. In numerical examples, effects of axial feeding speed, abrasive grain size, and installation angle variation on texture patterns and their mean roughness are investigated, respectively. A crowned tooth flank with irregular and oblique grinding texture is also demonstrated to prove the reasonability and validity of the proposed method. The maximum normal error of the resulting tooth surface is 0.20 µm, which meets the machining accuracy requirements.
關鍵字(中) ★ 創成磨齒
★ 研磨紋理
★ 齒輪嚙合噪音
★ 齒面拓樸修整
★ 表面粗糙度
關鍵字(英) ★ generating gear grinding
★ grinding texture
★ gear meshing noise
★ topology modification
★ mean roughness
論文目次 摘要 i
ABSTRACT ii
謝誌 iii
目錄 iv
圖目錄 vi
表目錄 vii
參數符號表 viii
第1章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究目的 4
1-4 論文架構 4
第2章 創成磨齒之數學模型建立 5
2-1 蝸桿砂輪之修整 5
2-2 以蝸桿砂輪創成工件齒輪 7
2-3 總結 9
第3章 齒面磨紋計算及控制方法 11
3-1 考量磨粒之蝸桿砂輪模型 11
3-2 齒面磨紋計算方式 13
3-3 以額外安裝角控制磨紋方向 15
3-4 齒面精度校正及抗扭曲修整 17
3-5 總結 19
第4章 數值範例 20
4-1 進給速度對齒面磨紋之影響 20
4-2 磨料大小對齒面磨紋之影響 22
4-3 額外安裝角對齒面磨紋之影響 23
4-4 抗扭曲修整 28
第5章 齒面磨紋參數決定 31
5-1 磨紋方向對傳動誤差之影響 31
5-2 額外安裝角之選擇方式 33
第6章 總結與未來展望 37
6-1 總結 37
6-2 未來展望 37
參考文獻 39
附錄A 42
A-1 實驗設備與架構 42
A-2 噪音量測結果 43
作者簡介 56
個人著作及參與計畫 57
參考文獻 [1] W. Graf, “Modification of Surface Structure and Geometry on Gears,” Reishauer AG, Switzerland, 2017.
[2] G. Mikoleizig, “Surface roughness measurements of cylindrical gears and bevel gears on gear inspection machines,” Gear Technology, 5: 48-55, 2015.
[3] A. Darafon, Measuring and modelling of grinding wheel topography, Ph.D. Dissertation, Dalhousie University, Halifax, Nova Scotia, 2013.
[4] C. Brecher, F. Klocke, C. Löpenhaus, and F. Hübner, “Analysis of abrasive grit cutting for generating gear grinding,” Procedia CIRP, 62: 299-304, 2017.
[5] X. Zhou and F. Xi, “Modeling and predicting surface roughness of the grinding process,” International Journal of Machine Tools and Manufacture, 42(8): 969-977, 2002.
[6] H.F. Chen, J.Y. Tang, and W. Zhou, “Modeling and predicting of surface roughness for generating grinding gear,” Journal of Materials Processing Technology, 213(5): 717-721, 2013.
[7] H.F. Chen, J.Y. Tang, and C.C. Zhu, “A new approach to modeling the surface topography in grinding considering ploughing action,” Machining Science and Technology, 22(4): 604-620, 2018.
[8] W.H. Zhou, J.Y. Tang, H.F. Chen, W. Shao, and B. Zhao, “Modeling of tooth surface topography in continuous generating grinding based on measured topography of grinding worm,” Mechanism and Machine Theory, 131: 189-203, 2019.
[9] W.H. Zhou, J.Y. Tang, and W. Shao, “Modelling of surface texture and parameters matching considering the interaction of multiple rotation cycles in ultrasonic assisted grinding,” International Journal of Mechanical Sciences, 166, 105246, 2020.
[10] W.H. Zhou, J.Y. Tang, and W. Shao, “Study on surface generation mechanism and roughness distribution in gear profile grinding,” International Journal of Mechanical Sciences, 187: 105921, 2020.
[11] S. Kimme, R. Bauer, W.G. Drossel, and M. Putz, “Simulation of error-prone continuous generating production processes of helical gears and the influence on the vibration excitation in gear mesh,” Procedia CIRP, 62: 256-261, 2017.
[12] Y.Z. Wang, Y. Liu, X.M. Chu, Y.M. He, and W. Zhang, “Calculation model for surface roughness of face gears by disc wheel grinding,” International Journal of Machine Tools and Manufacture, 123: 76-88, 2017.
[13] A. Türich, “Producing profile and lead modifications in threaded wheel and profile grinding,” Gear Technology, 27(1): 54-62, 2010.
[14] Y.P. Shih and S.D. Chen, “A flank correction methodology for a five-axis CNC gear profile grinding machine,” Mechanism and Machine Theory, 47: 31-45, 2012.
[15] Z.H. Fong and G.H. Chen, “Gear flank modification using a variable lead grinding worm method on a computer numerical control gear grinding machine,” Journal of Mechanical Design, 138(8): 083302, 2016.
[16] V.Q. Tran and Y.R. Wu, “A novel method for closed-loop topology modification of helical gears using internal-meshing gear honing,” Mechanism and Machine Theory, 145: 103691, 2020.
[17] LGA-3020 CNC Continuous Generating Gear Grinding Machine, Luren Precision CO., LTD, Hsin-Chu, Taiwan, 2016.
[18] F.L. Litvin and A. Fuentes, Gear Geometry and Applied Theory, Cambridge University Press, 2nd edition, 2004.
[19] Reishauer - Gear Grinding Technology: Reishauer Threaded Wheels, Technical Brochure, Reishauer AG, Switzerland.
[20] M.I.A. Lourakis, “A brief description of the Levenberg–Marquardt algorithm implemented by levmar,” Foundation for Research and Technology – Hellas (FORTH), Greece, 6 pages, 2015.
[21] T.M. Tsai, “Machining simulation and control method of ground texture on gear tooth surface based on continuous generating gear grinding,” M.S. thesis, Dept. Mechanical Eng., National Central Univ., Taiwan, 2020 (in Chinese).
[22] B.J. Baldeck, “Variable rate method of machining gears,” U.S. Patent No. 8,790,159., 2014.
[23] J. Böttger, S. Kimme, and W.-G. Drossel, “Characterization of vibration in continuous generating grinding and resulting influence on tooth flank topography and gear excitation,” Procedia CIRP, 99(757): 208-213, 2021.
[24] J. Qin, H. Ying, S. Huang, F. Quan, and Q. Zhang, “Influence of PWM Current Harmonics on Electromagnetic Noise of External-Rotor In-Wheel Permanent Magnet Synchronous Motor for Electric Vehicle.” The 10th International Conference on Informatics, Environment, Energy and Applications, 1-10, 2021.
[25] J. D. Smith, Gear noise and vibration, CRC press, 2003.
指導教授 吳育仁(Yu-Ren Wu) 審核日期 2022-8-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明