博碩士論文 109323060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:52.14.126.74
姓名 謝沁嬈(Chin-Yau Shie)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 基於石墨烯改質膨脹型阻燃塗料和混能式微奈米發電機的分層可撓性自供電熱感測器
(Highly Flexible and Self-Powered Thermal Sensor (FSTS) Based on Integrated Hierarchical Structure of Graphene-Modified Intumescent Flame Retardant (GIFR) Coating with Hybridized Nanogenerator)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-16以後開放)
摘要(中) 近年來,危及人類生命、經濟和環境的火災數量顯著增加。對於老舊建築,由於觸發火災警報所需的煙霧濃度閾值或紅外探測溫度較高,響應時間較長(超過100秒),火災預警和預防效果並不理想。為了有效監測和預警火災,本研究提出了一種新型火災報警系統,結合了高度可撓的自供電熱感測器(FSTS)以及警示燈,FSTS具有阻燃性並且非常易於安裝。本文的新穎之處在於 FSTS 的層次結構:結合通過近場靜電紡織(NFES)工藝沉積的聚偏二氟乙烯-三氟乙烯(PVDF-TrFE)微/奈米纖維(MNF)和通過聚二甲基矽氧烷(PDMS)翻模製成的靜電摩擦層,及封裝的石墨烯改質膨脹型阻燃(GIFR)塗料。FSTS的電壓輸出達到11.8V,可以搭配橋式整流電路給電容充電;在室溫下,FSTS是電絕緣的,在火災中,高溫導致塗層炭化並膨脹,從電絕緣狀態轉變為導電狀態,連接到FSTS的警示燈將在短時間內(~3 秒)做出響應,達成火災預警。
摘要(英) The number of fire events that risk human life, the economy, and the environment has significantly increased in recent years. Uncontrolled fires are one of the main causes of building collapse. For old structures, due to the high smoke concentration threshold or infrared detection temperature required to activate the fire detector, the response time is long (more than 100 s), and the fire warning and prevention effect are not ideal. For effective monitoring and early warning of fires, a novel fire alarm system was fabricated in this study. This system combines a highly flexible and self-powered thermal sensor (FSTS) as well as a commercial light emitting diode (LED). FSTS is fire retardant and very easy to install. The novelty of this paper is the hierarchical structure of FSTS. The structure integrates poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) micro/nano fibers (MNFs) deposited by Near-field electrospinning (NFES) process and an electrostatic friction layer by polydimethylsiloxane (PDMS) rolling over technology with a fully encapsulated graphene-modified intumescent flame retardant (GIFR) coating. It can be as a motion-induced energy harvester with a self-powered fire alarm system. The voltage output of FSTS reaches 11.8V, which can be easily matched with a bridge rectifier circuit to charge capacitors in daily life. The unique of FSTS is that at room temperature, FSTS is electrically insulating; however, it conducts electricity at high temperatures. In a fire, high temperatures cause the coating to char and expand transitioning from an electrically insulating state to a conducting state. In this way, warning lights connected to FSTS will respond within a short period (~3 s), alerting people immediately so that urgent action can be taken.
關鍵字(中) ★ 近場電紡織技術
★ 逐層堆疊多孔PVDF-TrFE微奈米纖維
★ 石墨烯改質膨脹型阻燃塗料
★ 高度可撓的自供電熱感測器
關鍵字(英) ★ Near-field electrospinning (NFES)
★ Poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE)
★ Micro/nano fibers (MNFs)
★ Graphene-modified intumescent flame retardant coating (GIFR Coating)
★ Flexible self-powered thermal sensor (FSTS)
論文目次 摘要 I
Abstract II
致謝 IV
目錄 VI
圖表目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 論文架構 3
第二章 文獻回顧 5
2.1 壓電效應 5
2.1.1. 正壓電效應 (Direct Piezoelectric Effect) 6
2.1.2. 逆壓電效應 (Converse Piezoelectric Effect) 7
2.2 壓電材料 8
2.2.1. 壓電材料種類 8
2.2.2. 壓電材料操作模式 9
2.3 壓電聚合物 10
2.4 摩擦電效應 13
2.5 電紡織技術 15
2.5.1. 電紡織技術背景 15
2.5.2. 電紡織技術原理 16
2.6 奈米發電機 19
2.6.1. 壓電奈米發電機(Piezoelectric Nanogenerator) 19
2.6.2. 摩擦電奈米發電機(Triboelectric Nanogenerator) 20
2.7 膨脹型阻燃塗料 22
2.7.1. 膨脹機制 22
2.7.2. 阻燃機制 22
2.7.3. 奈米添加劑 23
2.8 石墨烯 24
2.9 聚二甲基矽氧烷(PDMS) 25
第三章 基於石墨烯改質膨脹型阻燃塗料和混能式微奈米發電機的分層可撓性自供電熱感測器 26
3.1 導論 26
3.2 實驗方法及步驟 27
3.2.1 電紡絲製作方法及材料 27
3.2.2 膨脹型阻燃劑改質及製備 28
3.2.3 量測設備及應用 29
3.3 結果與討論 30
第四章 結論 52
第五章 未來展望 53
參考文獻 54
實 驗 儀 器 59
參考文獻 [1] S. Niu and Z. L. Wang, "Theoretical systems of triboelectric nanogenerators," Nano Energy, vol. 14, pp. 161-192, 2015.
[2] D. Hu, M. Yao, Y. Fan, C. Ma, M. Fan, and M. Liu, "Strategies to achieve high performance piezoelectric nanogenerators," Nano Energy, vol. 55, pp. 288-304, 2019.
[3] X. Cui et al., "A spongy electrode-brush-structured dual-mode triboelectric nanogenerator for harvesting mechanical energy and self-powered trajectory tracking," Nano Energy, vol. 78, p. 105381, 2020.
[4] Z. Lin et al., "Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring," ACS nano, vol. 11, no. 9, pp. 8830-8837, 2017.
[5] Y. Liu et al., "Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops," ACS nano, vol. 12, no. 3, pp. 2893-2899, 2018.
[6] L. Lu, W. Ding, J. Liu, and B. Yang, "Flexible PVDF based piezoelectric nanogenerators," Nano Energy, vol. 78, p. 105251, 2020.
[7] M. Han et al., "r-Shaped hybrid nanogenerator with enhanced piezoelectricity," ACS nano, vol. 7, no. 10, pp. 8554-8560, 2013.
[8] A. Ahmed et al., "Integrated triboelectric nanogenerators in the era of the internet of things," Advanced Science, vol. 6, no. 24, p. 1802230, 2019.
[9] W.-S. Jung et al., "High output piezo/triboelectric hybrid generator," Scientific reports, vol. 5, no. 1, pp. 1-6, 2015.
[10] S. Chen, X. Tao, W. Zeng, B. Yang, and S. Shang, "Quantifying energy harvested from contact‐mode hybrid nanogenerators with cascaded piezoelectric and triboelectric units," Advanced Energy Materials, vol. 7, no. 5, p. 1601569, 2017.
[11] Y. Zi et al., "Triboelectric–pyroelectric–piezoelectric hybrid cell for high‐efficiency energy‐harvesting and self‐powered sensing," Advanced Materials, vol. 27, no. 14, pp. 2340-2347, 2015.
[12] Y. H. Lu, H. H. Lo, J. Wang, T. H. Lee, and Y. K. Fuh, "Self-Powered, Hybrid, Multifunctional Sensor for a Human Biomechanical Monitoring Device," Applied Sciences, vol. 11, no. 2, p. 519, 2021.
[13] C. Chen et al., "A fully encapsulated piezoelectric--triboelectric hybrid nanogenerator for energy harvesting from biomechanical and environmental sources," Express Polymer Letters, vol. 13, no. 6, 2019.
[14] N. Zheng, J. Xue, Y. Jie, X. Cao, and Z. L. Wang, "Wearable and humidity-resistant biomaterials-based triboelectric nanogenerator for high entropy energy harvesting and self-powered sensing," Nano Research, pp. 1-7, 2022.
[15] E. D. Weil, "Fire-protective and flame-retardant coatings-A state-of-the-art review," Journal of fire sciences, vol. 29, no. 3, pp. 259-296, 2011.
[16] N. T. Dintcheva, S. Al-Malaika, and E. Morici, "Novel organo-modifier for thermally-stable polymer-layered silicate nanocomposites," Polymer Degradation and Stability, vol. 122, pp. 88-101, 2015.
[17] S.-Y. Lu and I. Hamerton, "Recent developments in the chemistry of halogen-free flame retardant polymers," Progress in polymer science, vol. 27, no. 8, pp. 1661-1712, 2002.
[18] Y. Liu, J. Zhao, C.-L. Deng, L. Chen, D.-Y. Wang, and Y.-Z. Wang, "Flame-retardant effect of sepiolite on an intumescent flame-retardant polypropylene system," Industrial & engineering chemistry research, vol. 50, no. 4, pp. 2047-2054, 2011.
[19] Q. Wu et al., "Efficient flame detection and early warning sensors on combustible materials using hierarchical graphene oxide/silicone coatings," ACS nano, vol. 12, no. 1, pp. 416-424, 2018.
[20] S. Katzir, "The discovery of the piezoelectric effect," in The beginnings of piezoelectricity: Springer, 2006, pp. 15-64.
[21] K. Uchino, Advanced piezoelectric materials: Science and technology. Woodhead Publishing, 2017.
[22] M. Birkholz, "Crystal-field induced dipoles in heteropolar crystals II: Physical significance," Zeitschrift für Physik B Condensed Matter, vol. 96, no. 3, pp. 333-340, 1995.
[23] J. Krautkrämer and H. Krautkrämer, "Ultrasonic testing by determination of material properties," in Ultrasonic Testing of Materials: Springer, 1990, pp. 528-550.
[24] C. Covaci and A. Gontean, "Piezoelectric energy harvesting solutions: A review," Sensors, vol. 20, no. 12, p. 3512, 2020.
[25] X. Hu, S. Yu, and B. Chu, "Increased effective piezoelectric response of structurally modulated P (VDF-TrFE) film devices for effective energy harvesters," Materials & Design, vol. 192, p. 108700, 2020.
[26] G. Zhu et al., "Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification," Nano letters, vol. 14, no. 6, pp. 3208-3213, 2014.
[27] N. Soin, S. Anand, and T. Shah, "Energy harvesting and storage textiles," in Handbook of Technical Textiles: Elsevier, 2016, pp. 357-396.
[28] S. Ebnesajjad, "Introduction to fluoropolymers," in Applied Plastics Engineering Handbook: Elsevier, 2017, pp. 55-71.
[29] D. W. Grainger, "Fluorinated Biomaterials," in Biomaterials Science: Elsevier, 2020, pp. 125-138.
[30] Q. Zhang, V. Bharti, and G. Kavarnos, "Poly (vinylidene fluoride)(PVDF) and its copolymers," Encyclopedia of smart materials, 2002.
[31] K. Omote, H. Ohigashi, and K. Koga, "Temperature dependence of elastic, dielectric, and piezoelectric properties of “single crystalline’’films of vinylidene fluoride trifluoroethylene copolymer," J. Appl. Phys., vol. 81, no. 6, pp. 2760-2769, 1997.
[32] N. A. Shepelin et al., "New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting," Energy & Environmental Science, vol. 12, no. 4, pp. 1143-1176, 2019.
[33] J. Luo and Z. L. Wang, "Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications," EcoMat, vol. 2, no. 4, p. e12059, 2020.
[34] Y. J. Kim, J. Lee, S. Park, C. Park, C. Park, and H.-J. Choi, "Effect of the relative permittivity of oxides on the performance of triboelectric nanogenerators," RSC advances, vol. 7, no. 78, pp. 49368-49373, 2017.
[35] N. Bhardwaj and S. C. Kundu, "Electrospinning: a fascinating fiber fabrication technique," Biotechnol. Adv., vol. 28, no. 3, pp. 325-347, 2010.
[36] K. Ghosal, C. Agatemor, N. Tucker, E. Kny, and S. Thomas, "Electrical spinning to electrospinning: a brief history," 2018.
[37] M. LF Nascimento, E. S Araujo, E. R Cordeiro, A. HP de Oliveira, and H. P de Oliveira, "A literature investigation about electrospinning and nanofibers: historical trends, current status and future challenges," Recent patents on nanotechnology, vol. 9, no. 2, pp. 76-85, 2015.
[38] G. I. Taylor, "Electrically driven jets," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 313, no. 1515, pp. 453-475, 1969.
[39] D. Sun, C. Chang, S. Li, and L. Lin, "Near-field electrospinning," Nano letters, vol. 6, no. 4, pp. 839-842, 2006.
[40] G. F. Zheng, L. Y. Wang, H. L. Wang, D. H. Sun, W. W. Li, and L. W. Lin, "Deposition characteristics of direct-write suspended micro/nano-structures," in Advanced Materials Research, 2009, vol. 60: Trans Tech Publ, pp. 439-444.
[41] F.-R. Fan, Z.-Q. Tian, and Z. L. Wang, "Flexible triboelectric generator," Nano energy, vol. 1, no. 2, pp. 328-334, 2012.
[42] Z. L. Wang and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science, vol. 312, no. 5771, pp. 242-246, 2006.
[43] R. Yang, Y. Qin, L. Dai, and Z. L. Wang, "Power generation with laterally packaged piezoelectric fine wires," Nature nanotechnology, vol. 4, no. 1, pp. 34-39, 2009.
[44] Y. Yang, L. Lin, Y. Zhang, Q. Jing, T.-C. Hou, and Z. L. Wang, "Self-powered magnetic sensor based on a triboelectric nanogenerator," ACS nano, vol. 6, no. 11, pp. 10378-10383, 2012.
[45] S. Liang, N. M. Neisius, and S. Gaan, "Recent developments in flame retardant polymeric coatings," Progress in Organic Coatings, vol. 76, no. 11, pp. 1642-1665, 2013.
[46] J. Wang, L. Wang, and A. Xiao, "Recent research progress on the flame-retardant mechanism of halogen-free flame retardant polypropylene," Polymer-Plastics Technology and Engineering, vol. 48, no. 3, pp. 297-302, 2009.
[47] M. C. Yew and N. R. Sulong, "Fire-resistive performance of intumescent flame-retardant coatings for steel," Materials & Design, vol. 34, pp. 719-724, 2012.
[48] Y. Wang and J. Zhao, "Effect of graphene on flame retardancy of graphite doped intumescent flame retardant (IFR) coatings: synergy or antagonism," Coatings, vol. 9, no. 2, p. 94, 2019.
[49] B. Dittrich, K.-A. Wartig, D. Hofmann, R. Mülhaupt, and B. Schartel, "Flame retardancy through carbon nanomaterials: Carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene," Polymer degradation and stability, vol. 98, no. 8, pp. 1495-1505, 2013.
[50] B. Yuan et al., "Dual modification of graphene by polymeric flame retardant and Ni (OH) 2 nanosheets for improving flame retardancy of polypropylene," Composites Part A: Applied Science and Manufacturing, vol. 100, pp. 106-117, 2017.
[51] B. Yuan et al., "Enhanced flame retardancy of polypropylene by melamine-modified graphene oxide," Journal of materials science, vol. 50, no. 16, pp. 5389-5401, 2015.
[52] G. Huang, S. Wang, P. a. Song, C. Wu, S. Chen, and X. Wang, "Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites," Composites Part A: Applied Science and Manufacturing, vol. 59, pp. 18-25, 2014.
[53] Y. Cui, S. Kundalwal, and S. Kumar, "Gas barrier performance of graphene/polymer nanocomposites," Carbon, vol. 98, pp. 313-333, 2016.
[54] A. Victor, J. Ribeiro, and F. F. Araújo, "Study of PDMS characterization and its applications in biomedicine: A review," Journal of Mechanical Engineering and Biomechanics, vol. 4, no. 1, pp. 1-9, 2019.
[55] J. Wang, C. C. Chen, C. Y. Shie, T. T. Li, and Y. K. Fuh, "A Hybrid Sensor for Motor Tics Recognition Based on Piezoelectric and Triboelectric Design and Fabrication," Sensors and Actuators A: Physical, p. 113622, 2022.
[56] B. Yu, H. Yu, T. Huang, H. Wang, and M. Zhu, "A biomimetic nanofiber-based triboelectric nanogenerator with an ultrahigh transfer charge density," Nano Energy, vol. 48, pp. 464-470, 2018.
指導教授 傅尹坤(Yiin-Kuen Fuh) 審核日期 2022-9-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明