博碩士論文 109323077 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:115 、訪客IP:13.58.121.131
姓名 許正宏(Cheng-Hung Hsu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 漸擴雙通式微流道蒸發熱交換器性能研究
相關論文
★ 冷卻水溫度與冰水溫度對離心式冰水主機性能影響之實驗分析★ 不同結構與幾何形狀對熱管性能之影響
★ 油冷卻器熱傳與壓降性能實驗分析★ 水對冷媒R22在板式熱交換器內之性能測試分析
★ 水對水在不同板片型式之板式熱交換器性能測試分析與比較★ 油冷卻器性能測試分析與比較
★ 空調機用水簾式暨光觸媒空氣清淨機 研製及測試★ 水對空氣在板式熱交換器之性能測試分析
★ 板片入出口及入出口管路壓降估計對板式熱交換器壓降性能影響分析★ 微熱交換器之設計與性能測試
★ 板式熱交換器之入出口壓降實驗分析★ 液體冷卻系統中之微熱交換器性能分析與改良
★ 直接模擬蒙地卡羅法於高低速流場之模擬★ 液體微熱交換器之熱傳增強研究
★ 冷媒R22在板式熱交換器內之凝結熱傳及壓降性能實驗分析★ 不同參數對燒結式熱管性能之影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 為了解決二相蒸發冷卻應用於高熱通量電子元件散熱時流動不穩定問題,本研究提出了以漸擴雙通型式的流道來改善微流道蒸發器之性能。分別設計了直線雙通、漸擴雙通與直線單通流道之二相蒸發熱交換器,並比較各型式之性能差異。三種流道型式的蒸發器總熱傳面積相同,直線單通與直線雙通型式的流道間距與高度同樣為1 mm、3 mm,漸擴雙通型式的流道間距則是從入口處0.6 mm逐步漸擴至出口處1.4 mm,漸擴角度為0.449o,流道高度同樣為3 mm。
以雙通型式流道來改善蒸發器性能會增加熱交換器壓降,原因是流過熱交換器的流量相同時,單通型式的流道質量通量較小、流道長度較短,因此熱交換器壓降較小。而直線與漸擴雙通流道的壓降在流道乾涸發生之前並無明顯差異。
直線單通流道在高熱通量時,流道被汽體佔據,液體無法順利補充進流道,導致局部乾涸現象發生使其有較低的熱傳性能。雙通流道相鄰流道之間的流體會相互冷卻,減緩出口處的汽泡成長,讓流體維持在汽泡流狀態,使熱傳性能提升。直線與漸擴雙通流道在乾涸發生前的熱傳性能相同,但漸擴雙通流道有利於汽泡脫離的特性可以延後局部乾涸發生,使其在三種流道型式的蒸發器中有最高的熱傳性能。
以漸擴雙通流道來改善直線單通流道蒸發熱交換器性能,可以提升27至35 %熱傳係數,並在流量273 ml/min時使最小熱阻從0.035降低至0.026 K/W,且最大熱傳係數下的底部熱通量相當,但同時也增加了126%的壓降。
摘要(英) This study develops a two-pass diverging microchannel heat exchanger to improve the two-phase flow instability in a microchannel heat exchanger used for the thermal management of high-power electronics. We totally designed three types of two-phase evaporative heat exchangers, including single-pass straight microchannel, two-pass straight microchannel, and two-pass diverging microchannel, and compared the performance of each type. Three types of microchannel have the same heat transfer area. Both single-pass and two-pass straight microchannel fin spacing and fin height are 1 mm and 3 mm, while the two-pass diverging microchannel fin spacing increase from 0.6 mm at the entrance to 1.4 mm at the exit with 0.449o diverging angle, and the height also 3 mm.
The experiment results show that a two-pass microchannel would increase the pressure drop of the heat exchanger at the same flow rate, because of the shorter channel length and lower mass flux of the single-pass microchannel. There is no significant pressure drop difference between two-pass straight and two-pass diverging microchannels.
Under the condition of high heat flux, the single-pass straight microchannel would be blocked by the large bubble causing the channel surface partial dry-out and decreasing the heat transfer performance. For the same condition in the two-pass microchannel. Due to the heat transfer between neighboring channels suppressing the bubble growth near the exit of the channel, the flow pattern can maintain bubble flow and increase the heat transfer performance. There is no obvious heat transfer performance difference between two-pass straight and two-pass diverging microchannel before partial dry-out happened. Owing to a more stable two-phase flow in the diverging microchannel, the two-pass diverging microchannel has the best heat transfer performance of the three types of microchannels.
In addition, using two-pass diverging microchannel to improve the single-pass straight microchannel has 27 % to 35 % increment of heat transfer coefficient, decreasing the minimum thermal resistance from 0.035 to 0.026 K/W, while with 126% increment of pressure drop.
關鍵字(中) ★ 二相蒸發熱交換器
★ 直線流道
★ 漸擴流道
★ 雙通型式熱交換器
關鍵字(英) ★ Two-phase heat exchanger
★ Straight channel
★ Diverging channel
★ Two-pass heat exchanger
論文目次 摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 IX
符號說明 X
第一章、前言 1
1.1 研究背景與動機 1
1.2 研究目的 5
第二章、文獻回顧 7
2.1 二相微流道蒸發器之熱傳性能與流動現象 9
2.2 二相微流道蒸發器性能與流動現象改善方法 15
2.2.1 增加流道入口處壓降 15
2.2.2 更改鰭片型式微流道 18
2.2.3 向上漸擴型式微流道 23
2.2.4 漸擴型式微流道 25
2.3 微流道蒸發器改善方法統整 34
第三章、研究方法 37
3.1 雙通式微流道熱交換器之設計 37
3.1.1 流道設計 38
3.1.1.1 流道寬度 39
3.1.1.2 鰭片厚度 41
3.1.1.3 流道高度 41
3.1.1.4 漸擴流道漸擴角度 42
3.1.2 雙通式微流道熱交換器測試段 45
3.2 實驗系統 54
3.2.1 加熱系統 54
3.2.2 實驗量測儀器與設備 58
3.2.2.1 溫度量測 58
3.2.2.2 流量量測 58
3.2.2.3 壓力量測 58
3.2.2.3 差壓量測 59
3.2.3 資料擷取系統 59
3.3 實驗步驟 60
3.4 實驗數據換算 60
3.4.1 加熱瓦數 60
3.4.2 質量流率 61
3.4.3 出口乾度 61
3.4.4 熱傳係數 61
3.4.5 熱阻值 62
3.4.6 測試段壓降 62
第四章、實驗結果與討論 65
4.1 單相能量平衡實驗結果 65
4.2 壓降性能之測試結果 67
4.2.1 直線單通式微流道熱交換器之壓降性能 67
4.2.2 直線與漸擴雙通式微流道熱交換器之壓降性能 67
4.2.3三種熱交換器之壓降性能比較 72
4.3 熱傳性能之實驗結果 75
4.3.1 直線單通式微流道熱交換器之熱傳性能 75
4.3.2 直線與漸擴雙通式微流道熱交換器之熱傳性能 77
4.3.3 三種熱交換器性能比較 80
第五章、結論 88
參考文獻 89
附錄(一)、二相壓降經驗式與汽泡回流位置估算 93
附錄(二)、實驗誤差分析 97
參考文獻 [1] IEA (2020), Data Centres and Data Transmission Networks, IEA, Paris, https://www.iea.org/reports/data-centres-and-data-transmission-networks
[2] “Two-Phase Evaporative Precision Cooling Systems For heat loads from 3 to 300kW,” 2011 Parker Hannifin Corporation. (https://www.parker.com/literature/CIC%20Group/Precision%20Cooling/New%20literature/Two_Phase_Evaporative_Precision_Cooling_Systems.pdf)
[3] https://www.1-act.com/resources/pumped-two-phase-cooling/
[4] https://www.1-act.com/case-studies/pumped-two-phase-cooling-for-high-heat-flux-applications/
[5] Collier, J. G., and Thome, J. R., 1994, Convective Boiling and Condensation, Third Edition. Oxford University Press New York. Chapter 4, p. 17.
[6] Qu, W. and Mudawar, I., 2003, “Flow boiling heat transfer in two-phase micro-channel heat sinks-I Experimental investigation and assessment of correlation methods”, International Journal of Heat and Mass Transfer, Vol. 46, pp. 2755-2771.
[7] Markal, B., Aydin, O. and Avci, M., 2018, “Effect of hydraulic diameter on flow boiling in rectangular microchannels”, Heat and Mass Transfer, Vol. 55, pp. 1033-1044.
[8] Balasubramanian, P., and Kandlikar, S. G., 2005, “Experimental study of flow patterns, pressure drop and flow instabilities in parallel rectangular minichannels”, Heat Transfer Engineering, Vol. 26, pp. 20-27.
[9] Kandlikar, S. G., 2006, “Nucleation characteristics and stability considerations during flow boiling in microchannels”, Experimental Thermal and Fluid Science, Vol. 30(5), pp. 441-447.
[10] Lee, J., and Mudawar, I., 2008, “Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks – Part 1: Experimental methods and flow visualization results”, International Journal of Heat and Mass Transfer, Vol. 51, pp. 4315-4326.
[11] Kandlikar, S. G., Kuan, W. K., Willistein, D. A., & Borrelli, J., 2006, “Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites”, Journal of Heat Transfer, Vol. 128(4), pp. 389-396.
[12] Koşar, A., Kuo, C.-J., & Peles, Y., 2006, “Suppression of Boiling Flow Oscillations in Parallel Microchannels by Inlet Restrictors”, Journal of Heat Transfer, Vol. 128(3), pp. 251-260.
[13] Wang, G., Cheng, P., & Bergles, A. E., 2008, “Effects of inlet/outlet configurations on flow boiling instability in parallel microchannels”, International Journal of Heat and Mass Transfer, Vol. 51(9-10), pp. 2267-2281.
[14] Lee, H. J., Liu, D. Y., & Yao, S., 2010, “Flow instability of evaporative micro-channels”, International Journal of Heat and Mass Transfer, Vol 53(9-10)., pp. 1740-1749.
[15] Law, M., Lee, P.-S., & Balasubramanian, K., 2014, “Experimental investigation of flow boiling heat transfer in novel oblique-finned microchannels”, International Journal of Heat and Mass Transfer, Vol 76, pp. 419–431.
[16] Law, M., & Lee, P.-S., 2015, “A comparative study of experimental flow boiling heat transfer and pressure characteristics in straight- and oblique-finned microchannels”, International Journal of Heat and Mass Transfer, Vol 85, pp. 797–810.
[17] Liu, W.-C. and Yang, C.-Y., 2014, “Two-Phase Flow Visualization and Heat Transfer Performance of Convective Boiling in Micro Heat Exchangers”, Experimental Thermal and Fluid Science, Vol. 57, pp. 358-364.
[18] Kandlikar, S. G., Widger, T., Kalani, A., Mejia, V., 2013, “Enhanced flow boiling over open microchannels with uniform and tapered gap manifolds (OMM)”, Journal of Heat Transfer, Vol. 135., 061401-1.
[19] Lee, P. C. and Pan, C., 2007, “Boiling heat transfer and two-phase flow of water in a single shallow microchannel with a uniform or diverging cross section”, Journal of Micromechanics and Microengineering, Vol. 18., 025005.
[20] Lu, C. T. and Pan, C., 2008, “Stabilization of flow boiling in microchannel heat sinks with a diverging cross-section design.”, Journal of Micromechanics and Microengineering, Vol. 18, 075035.
[21] Balasubramanian, K., Lee, P.S., Jin, L.W., Chou, S.K., Teo, C.J., Gao, S., “Experimental investigations of flow boiling in straight and expanding microchannels — a comparative study”, International Journal of Thermal Sciences”, Vol. 50, pp. 2413-2421.
[22] Jiang, X., Zhang, S., Li, Y., & Pan, C., 2020, “High performance heat sink with counter flow diverging microchannels”, International Journal of Heat and Mass Transfer, Vol. 162., 120344.
[23] Fritz, W., 1935, “Berechnung des Maximal volumes von Dampfblasen”, physic. Zeitschr, Vol. 36, pp. 379-384.
[24] E. Lemmon, M. Huber, M. McLinden, REFPROP 9.1, NIST Standard Reference Database, vol. 23, 2013 <http://www.nist.gov/srd/nist23.cfm>.
[25] Shah, M. M., 2017, “Unified correlation for heat transfer during boiling in plain mini/micro and conventional channels”, International Journal of Refrigeration, Vol 74, pp. 606-626.
[26] Kandlikar, S. G., & Balasubramanian, P., 2004, ”An Extension of the Flow Boiling Correlation to Transition, Laminar, and Deep Laminar Flows in Minichannels and Microchannels” Heat Transfer Engineering, Vol 25(3), pp. 86-93.
[27] Kim, S.-M., & Mudawar, I., 2013, “Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels – Part II. Two-phase heat transfer coefficient”, International Journal of Heat and Mass Transfer, Vol 64, pp. 1239-1256.
[28] Kandlikar, S., Garimella, S., Li, D., Colin, S., King, M.R., 2005, “Heat Transfer and Fluid Flow in Minichannels and Microchannels”, Elsevier, Amsterdam.
[29] Kim, S.-M., & Mudawar, I, 2013, “Universal approach to predicting two-phase frictional pressure drop for mini/micro-channel saturated flow boiling”, International Journal of Heat and Mass Transfer, Vol 58(1-2), pp. 718-734.
[30] Friedle, L., 1979, “Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow”, Presented at the European Two-phase Flow Group Meeting, Ispra, Italy, Paper E2, June.
[31] Hewitt, G.F., Kearsey, H.A., Lacey, P.M.C., Pulling, D. J., “Burnout and nucleation in climbing film boiling flow”, International Journal of Heat and Mass Transfer. 8 (1965) 793-814.
指導教授 楊建裕(Chien-Yuh Yang) 審核日期 2022-9-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明