博碩士論文 107323049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.188.252.23
姓名 鄭竣安(Chun-An Cheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鋰離子電池模組之產熱模型建立與熱傳模擬分析
(Modeling and Numerical Analysis of Heat Transfer in a Li-ion Battery Pack)
相關論文
★ 超快雷射薄石英晶圓微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射直寫技術應用於金屬網格軟性透明電極製作
★ 多功能崁入式金屬網格透明電極技術開發★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作
★ 雷射直寫自還原金屬複合墨水製作高抗氧化銅鎳合金網格透明電極★ 以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極
★ 航太用鋁合金板熱處理爐設施之研究★ 雷射加工機應用於微米元件轉印製程之研究
★ 連續與脈衝式近紅外光雷射對無鹼玻璃之改質與雙面微透鏡陣列加工★ 使用濕式蝕刻後處理輔助之雷射藍寶石通孔研究
★ 脈衝雷射切割無定向矽鋼片及人工智能質量預測的實驗研究★ 雷射選擇圖案與無電鍍銅沉積應用於鋁矽酸玻璃基板之金屬化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-9-27以後開放)
摘要(中) 本研究針對電池模組中的產熱情形進行三維暫態熱流分析。首先利用實驗求得電池之比熱並推導出電池隨時間之產熱率,並將之應用於鋰離子電池模組中。爾後透過實驗數據觀察電池模組之PCB板其產熱對於模組的熱分佈有顯著影響,因此建立兩種形式的PCB板產熱方式應用於模擬中。第一種方法為收集PCB板上的6個溫度數據並假設PCB板為一塊狀系統來做均勻熱產生率。而第二種方法為將選定之時間點的溫度實驗數據代入Matlab中來做出擬合曲面並設置為邊界條件。此兩種方法都需由User-Defined Function來代入Ansys Fluent求解。後續由模擬驗證中可清楚看到模擬之數值隨著擬合曲面而改變,由此確立User Defined Function的正確性。模擬結果與設置於Cell Holder上的9個熱電偶數據做比對,可看到由於PCB板的產熱,對於此9點之溫度趨勢產生影響。由靠近PCB板的溫度最熱,且溫度隨著距離增加而遞減。此趨勢在兩組模擬中均可觀察到,不過在數值上與實驗數據有差距。PCB板的產熱也對於電池的溫度產生影響,使得整體電池的最大溫度差異在放電率0.6C時有4.6℃,而在放電率1C時有3.248℃。
摘要(英) The purpose of this study is to investigate the thermal-fluid field induced by the generation of heat during battery discharge in a Li-ion battery pack by 3D transient numerical simulations. The specific heat of the battery and the time-dependent heat generation of the battery were obtained based on experiments, and they were utilized as inputs for simulation settings. The experimental data further showed that heat generation of the PCB board was another significant heat in the battery package and had to be considered. Therefore, two methods concerning the heat source from the PCB energy dissipation were established. The first method was modeled by assuming the PCB was a lumped system and producing uniform heat based on the experimental data from the six thermocouples placed on the PCB plate. The second approach was to create time-dependent, curve-fitted surfaces as temperature boundary conditions from the measured temperature data by Matlab software. Both methods required the use of User-Defined Function to bring into Ansys Fluent. It was later validated that the numerical values varied with the curve-fitted faces and ensured the User-Defined Function was properly defined. The simulation results from both methods were compared with the measured temperatures obtained by the 9 thermocouples placed in the cell holder. It was found that the heat generation of the PCB plate had an impact on the temperature trend of these 9 points. The locations near the PCB plate had higher temperatures and the temperature gradually decreased as the distance with the PCB plate was increased. This trend was observed in both simulation methods, although their numerical values were different. The existence of heat generation of the PCB plate also affected the temperature distribution of the batteries, causing the maximum temperature difference of the batteries under 0.6C discharge rate to differ as high as 4.6℃. As for batteries under1C discharge rate the maximum temperature difference is 3.248℃.
關鍵字(中) ★ 鋰離子電池
★ 數值模擬
★ 熱流分析
關鍵字(英) ★ Lithium-ion battery
★ Numerical simulation
★ Heat Transfer and fluid flow analysis
論文目次 中文摘要 v
ABSTRACT vi
CONTENTS vii
LIST OF FIGURES x
LIST OF TABLES xv
NOMENCLATURE xvii
Chapter 1 Introduction 1
1-1 Background 1
1-2 Lithium-ion Batteries & other Secondary Batteries 1
1-3 Characteristics of Lithium-ion Batteries 2
1-4 Applications for Lithium-ion Batteries 3
1-5 Battery Irreversible Heat Generation & Thermal runaway 5
1-6 Research Motivation 6
Chapter 2 Literature review 12
2-1 Thermal Management 12
2-2 Natural convection thermal management for battery 13
2-3 Experimental method for battery heat generation 16
Chapter 3 Experimental details for Battery Heat Generation 20
3-1 Measurements for Battery Heat Generation During Discharge 20
3-1-1 Experimental Setup 20
3-1-2 Derivation of the specific heat capacity of the battery 21
3-1-3 Heat generation of battery versus time 28
3-2 Materials and equipment for experiments 31
Chapter 4 CFD for battery discharge thermal simulation 32
4-1 Numerical simulation overview 32
4-1-1 Computer Fluids Dynamics (CFD) 32
4-1-2 Ansys Fluent 32
4-2 Governing Equations 34
4-3 Numerical model and setup 35
4-3-1 Dimensions for the numerical model 35
4-3-2 Boundary Conditions 37
4-3-3 Assumptions 39
4-3-4 Solution Setups for simulation 39
4-3-5 Material Properties 40
4-4 Forms of PCB plate heating methods during battery discharge 41
4-4-1 Heat generation method 42
4-4-2 Boundary condition method 44
4-5 Grid Independence Test 49
4-6 Validation for UDF 52
4-7 Flow chart for simulation settings 57
Chapter 5 Results and Discussion 58
5-1 Comparison of numerical and experimental data 58
5-2 Results from heat generation method and boundary condition method 61
5-2-1 Temperature & Density contour 61
5-2-2 Velocity contour & Streamlines 63
5-3 Influence of the heat from PCB plate on the temperature of batteries 66
5-4 Battery temperature distribution under 1C discharge rate 72
Chapter 6 Conclusions 78
References 80
碩士論文口試委員問題與建議 82
參考文獻 1. Ould Ely, T., D. Kamzabek, and D. Chakraborty, Batteries Safety: Recent Progress and Current Challenges. Frontiers in Energy Research, 2019. 7.
2. Nishi, Y., The Development of Lithium Ion Secondary Batteries. The Chemical Record, 2001. 1: p. 406-413.
3. Chen, S., Z. Gao, and T. Sun, Safety challenges and safety measures of Li‐ion batteries. Energy Science & Engineering, 2021. 9(9): p. 1647-1672.
4. Wen, J., Y. Yu, and C. Chen, A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions. Materials Express, 2012. 2(3): p. 197-212.
5. Abada, S., et al., Safety focused modeling of lithium-ion batteries: A review. Journal of Power Sources, 2016. 306: p. 178-192.
6. Conte, F.V., Battery and battery management for hybrid electric vehicles: a review. e & i Elektrotechnik und Informationstechnik, 2006. 123(10): p. 424-431.
7. Jeong, G., et al., Prospective materials and applications for Li secondary batteries. Energy & Environmental Science, 2011. 4(6).
8. Gerssen-Gondelach, S.J. and A.P.C. Faaij, Performance of batteries for electric vehicles on short and longer term. Journal of Power Sources, 2012. 212: p. 111-129.
9. Carey, N. and C. Steitz, EU proposes effective ban for new fossil-fuel cars from 2035, in Reuters. 2021.
10. Chen, T., et al., Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems. Transactions of Tianjin University, 2020. 26(3): p. 208-217.
11. Ke, Y.-K., Appication of Lithium-ion batteries in energy storage systems. Journal of Marine Science and Technology, 2019. 27(4).
12. Crabtree, G., E. Kócs, and L. Trahey, The energy-storage frontier: Lithium-ion batteries and beyond. MRS Bulletin, 2015. 40(12): p. 1067-1078.
13. Katz, C., In Boost for Renewables, Grid-Scale Battery Storage Is on the Rise, in Yale Environment 360. 2020: Yale University.
14. Kong, D., et al., Numerical investigation of thermal runaway behavior of lithium-ion batteries with different battery materials and heating conditions. Applied Thermal Engineering, 2021. 189.
15. Farhad, S. and A. Nazari, Introducing the energy efficiency map of lithium-ion batteries. International Journal of Energy Research, 2019. 43(2): p. 931-944.
16. Saw, L.H., et al., Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling. Applied Energy, 2016. 177: p. 783-792.
17. Fankai Meng, L.C., Zhihui Xie, Numerical simulations and analyses on thermal characteristics of 18650 lithium-ion batteries with natural cooling conditions. International Journal of Energy and Environment, 2017. 8(1): p. 43-50.
18. Kalkan, O., A. Celen, and K. Bakirci, Experimental and numerical investigation of the LiFePO4 battery cooling by natural convection. Journal of Energy Storage, 2021. 40.
19. Karimi, G. and X. Li, Thermal management of lithium-ion batteries for electric vehicles. International Journal of Energy Research, 2013. 37(1): p. 13-24.
20. Behi, H., et al., Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications. Energy, 2021. 224.
21. Wang, S., S. Ji, and Y. Zhu, A comparative study of cooling schemes for laminated lithium-ion batteries. Applied Thermal Engineering, 2021. 182.
22. Hong, J.S., et al., Electrochemical‐Calorimetric Studies of Lithium‐Ion Cells. Journal of The Electrochemical Society, 2019. 145(5): p. 1489-1501.
23. Onda, K., et al., Experimental Study on Heat Generation Behavior of Small Lithium-Ion Secondary Batteries. Journal of The Electrochemical Society, 2003. 150(3).
24. Lin, C., S. Xu, and J. Liu, Measurement of heat generation in a 40 Ah LiFePO4 prismatic battery using accelerating rate calorimetry. International Journal of Hydrogen Energy, 2018. 43(17): p. 8375-8384.
25. Liu, Y., et al., Numerical Analysis and Design of Thermal Management System for Lithium Ion Battery Pack Using Thermoelectric Coolers. Advances in Mechanical Engineering, 2015. 6.
26. Mills, A. and S. Al-Hallaj, Simulation of passive thermal management system for lithium-ion battery packs. Journal of Power Sources, 2005. 141(2): p. 307-315.
27. Zhang, X., et al., Evaluation of convective heat transfer coefficient and specific heat capacity of a lithium-ion battery using infrared camera and lumped capacitance method. Journal of Power Sources, 2019. 412: p. 552-558.
28. Thermal properties of metals, conductivity, thermal expansion, specific heat. Available from: https://www.engineersedge.com/properties_of_metals.htm.
29. Deng, D. and H. Murakawa, Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Computational Materials Science, 2006. 37(3): p. 269-277.
30. Mabrouki, T., et al., Numerical and experimental study of dry cutting for an aeronautic aluminium alloy (A2024-T351). International Journal of Machine Tools and Manufacture, 2008. 48(11): p. 1187-1197.
31. Liu, S., et al., Experimental and simulation study on thermal characteristics of 18,650 lithium–iron–phosphate battery with and without spot–welding tabs. Applied Thermal Engineering, 2020. 166.
32. Giorgini, D.D.G.A., The validity of the boussinesqi approximation for liquids and gases. International Journal Heat Mass Transfer, 1976. 19: p. 545-551.
33. A.J.Policastro, M.S., Effects of the Boussinesq Approximation on the Results of Strongly-Buoyant Plume Calculations, in American Meteorological Society. 1984.
34. Chen, H., et al., Thermal conductivity of polymer-based composites: Fundamentals and applications. Progress in Polymer Science, 2016. 59: p. 41-85.
35. Knowledge source on Materials Engineering. Available from: http://www.substech.com/dokuwiki/doku.php?id=thermoplastic_polypropylene_pp.
36. Thermal Properties of Plastic Materials. Available from: https://www.professionalplastics.com/professionalplastics/ThermalPropertiesofPlasticMaterials.pdf.
37. ValCrie Eveloy, P.R., John Lohan, Comparison of numerical predictions and experimental measurements for the thermal transient behavior of a board-mounted electronic component, in Inter Society Conference on Thermal Phenomenal 2002. p. 2.
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2022-9-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明