博碩士論文 109624005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.133.148.130
姓名 陳逸賢(Yi-Hsien Chen)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 考慮限制速率吸附的多NAPL污染源含氯溶劑污染物與其降解生成產物遷移新解析模式發展
相關論文
★ 單井垂直循環流場追蹤劑試驗數學模式發展★ 斷層對抽水試驗洩降反應之影響
★ 漸近型式尺度延散度之一維移流-延散方程式之Laplace轉換級數解★ 延散效應對水岩交互作用反應波前的影響
★ 異向垂直循環流場溶質傳輸分析★ 溶解反應對碳酸岩孔隙率與水力傳導係數之影響
★ 濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建立★ 異向含水層部分貫穿井溶質傳輸分析
★ 溶解與沈澱反應對碳酸鈣礦石填充床孔隙率與水力傳導係數變化之影響★ 有限長度圓形土柱實驗二維溶質傳輸之解析解
★ 第三類注入邊界條件二維圓柱座標移流-延散方程式解析解發展★ 側向延散對雙井循環流場追蹤劑試驗溶質傳輸的影響
★ 關渡平原地下水流動模擬★ 應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度
★ 關渡濕地沉積物中砷之地化循環與分布★ 結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 用於生產多種工業產品所使用的化學溶劑在不當處理的情況下會滲入地下水造成污染,其中四氯乙烯(Tetrachloroethylene,PCE)及其降解的子物種等含氯有機溶劑為工業場址中常見的污染物。現地污染場址內常見多個污染源釋出的情況,然而在過去發展污染傳輸模式的諸多研究中,大部分研究所考慮的邊界源傳輸模式在模擬場址內污染源的污染傳輸問題時會受到限制且難以廣泛應用。考慮場址內污染源(後稱內部污染源)的污染傳輸模式可以模擬污染場址中多個污染源的釋出情形,且模式中所考量的限制速率吸附可以避免低估可降解污染物之濃度和線性平衡吸附不適用的情況。本研究欲發展考量多個內部污染源的多物種污染物傳輸半解析解模式,且模式考慮移流、延散、限制速率吸附和一階降解反應等前人研究中所納入的重要傳輸機制。此半解析解推導依序應用Laplace轉換、finite Fourier cosine轉換及廣義型積分轉換消去時間及空間微分項,將偏微分方程式轉換為代數方程式進行求解,再利用一系列逆轉換求得半解析解。本模式的最大特點在於可以模擬多個內部污染源釋出的情況,並可以在任意地下水流速度下進行模擬,其不僅能提供更精確的污染團分布情形,亦能替代過去僅考慮邊界污染源的模式作為初步評估污染整治的基礎。
摘要(英) Chemical solvents used in the production of many industrial products can seep into groundwater and cause pollution if improperly executed. For example, PCE (tetrachloroethylene) and the daughter species of it are the common chlorinated solvents in industrial sites. The release of multiple internal pollution sources is common to observe at the in-situ contaminated sites. However, in many previous studies on the development of contaminant transport models in the past, the models considered boundary sources in most studies would be limited and difficult to be widely used when simulating the contaminant transport problems of multiple internal pollution sources. Contaminant transport model considering internal sources can simulate the release of multiple pollution sources inside the contaminated site, and the rate-limited sorption is considered in the model to avoid underestimating the concentration of degradable pollutants and the situation where linear equilibrium sorption is not applicable. This study develops a semi-analytical model of multi-species contaminant transport subject to multiple internal pollution sources, which also considers important transport mechanisms included in previous studies, such as advection, dispersion, rate-limited sorption and first-order decay. The derivation of this semi-analytical model applies Laplace transform, finite Fourier cosine transform, generalized integral transform and a series of inverse transform. The greatest contribution of this model is that it can simulate the release of multiple internal pollution sources at the contaminated sites, and can be simulated at any groundwater flow velocity. It can not only provide a more accurate prediction for the distribution of the pollution plume, but also replace the previous models that only considered boundary source as the basis for preliminary assessment of pollution remediation.
關鍵字(中) ★ 解析解
★ 限制速率吸附
★ 污染傳輸模式
關鍵字(英)
論文目次 目錄
摘要… i
ABSTRACT ii
目錄… iii
圖目錄 v
表目錄 vii
符號說明 viii
一、 緒論 1
1-1 研究背景 1
1-2 文獻回顧 3
1-3 研究目的 7
二、 數學模式建立與推導 8
2-1 數學模式建立 8
2-2 半解析解推導 13
三、 模式收斂性測試與驗證 25
3-1 模式收斂性測試 25
3-2 模式驗證 37
四、 模式應用的結果與討論 45
4-1 模式收斂性測試 45
4-2 模式驗證 52
4-3 現地應用 56
五、 結論與建議 61
5-1 結論 61
5-2 建議 62
參考文獻 63
參考文獻 Aziz, C. E., Newell, C.J., Gonzales, J.R., Hass P., Clement, T.P., and Sun, Y., “BIOCHLOR-Natural attenuation decision support system v1.0, User’s Manual”, US EPA Report, EPA 600/R-00/008, 2000.
Barbaro, J.R., “Assessment of natural attenuation of ground-water contamination at sites FT03, LF13, and WP14/LF15, Dover Air Force Base, Delaware”, U.S. Geological Survey Water-Resources Investigations Report, 01-4150, 2002.
Batu, V., “A generalized two-dimensional analytical solution for hydrodynamic dispersion in bounded media with the first-type boundary condition at the source”, Water Resour. Res., 25, 1125-1132, 1989.
Carr, E., “Generalized semi-analytical solution for coupled multispecies advection-dispersion equations in multilayer porous media”, Appl. Math. Model., 94, 87-97, 2021.
Chang, Z.H., “Multispecies transport analytical model with different chain decay reaction pathways (Master’s thesis)”, National Central University, Taoyuan, Taiwan, 2018.
Chen, J.S., Chen, J.T., Liu, C.W., Liang, C.P., and Lin, C.M., “Analytical solutions to two-dimensional advection-dispersion equation in cylindrical coordinates in finite domain subject to first and third-type inlet boundary conditions”, J. Hydrol., 405, 522-531, 2011.
Chen, J.S., Lai, K.H., Liu, C.W., and Ni, C.F., “A novel method for analytically solving multi-species advective-dispersive transport equations sequentially coupled with first-order decay reactions”, J. Hydrol., 420-421, 191-204, 2012a.
Chen, J.S., Liu, C.W., Liang, C.P., and Lai, K.H., “Generalized analytical solutions to sequentially coupled multispecies advective-dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition”, J. Hydrol., 456-457, 101-109, 2012b.
Chen, J.S., Liang, C.P., Liu, C.W., and Li, L.Y., “An analytical model for simulating two-dimensional multispecies plume migration”, Hydrol. Earth Sys. Sci., 20, 733-753, 2016a.
Chen, J.S., Hsu, S.Y., Li, M.H., and Liu, C.W., “Assessing the performance of a permeable reactive barrier-aquifer system using a dual-domain solute transport model”, J. Hydrol., 543, 849-860, 2016b.
Chen, J.S., Ho, Y.C., Liang, C.P., Wang, S.W., Liu, C.W., “Semi-analytical model for coupled multispecies advective-dispersive transport subject to rate-limited sorption”, J. Hydrol., 579, 124-164, 2019a.
Chen, J.S., Liang, C.P., Chang, C.H., and Wan, M.H., “Simulating three-dimensional plume migration of a radionuclide decay chain through groundwater”, Energies., 12, 37-40, 2019b.
Clement, T.P., Johnson, C.D., Sun, Y., Klecka, G.M. and Bartlett, C., “Natural attenuation of chlorinated ethene compounds: model development and field-scale application at the Dover site”, J. Hydrol., 42, 113-140, 2000.
Clement, T.P., “Generalized solution to multispecies transport equations coupled with a first-order reaction network”, Water Resour. Res., 37(1), 157-163, 2001.
Chaudhary, M. and Singh, M.K., “Study of multispecies convection-dispersion transport equation with variable parameter”, J. Hydrol., 591, 125562, 2020.
Ding, X.H., Feng, S.J. and Zheng, Q.T., “A two-dimensional analytical model for contaminant transport in a finite domain subjected to multiple arbitrary time-dependent point injection sources”, J. Hydrol., 597, 126318, 2021.
Goltz, M.N. and Oxley, M.E., “Analytical modeling of aquifer decontamination by pumping when transport is affected by rate-limited sorption”, Water Resour. Res. 27 (4), 547–556, 1991.
Ho, Y.J., “Analytical model for multispecies transport subject to rate-limited sorption (Master’s thesis)”, National Central University, Taoyuan, Taiwan, 2017.
Kreft, A., and Zuber, A., “Comment on “flux averaged and volume averaged concentrations in continuum approaches to solute transport” ”, Water Resources Research, 22, 1157-1158, 1986.
Moridis, G.J. and Reddell, D.L., “The Laplace transform finite difference method for simulation of flow through porous media”, Water Resour. Res. 27 (8), 1873–1884, 1991.
Parker, J.C. and van Genuchten, M.Th., “Flux-averaged and volume-averaged concentrations in continuum approaches to solute transport”, Water Resources Research, 20, 866-872, 1984.
Parlange, J.Y. and Starr. J.L., “Dispersion in Soil Columns: Effect of Boundary Conditions and Irreversible Reactions—Reply”, Soil Science Society of America Journal, 42, 15-18, 1978.
Parlange, J.Y., Barry, D.A. and Starr. J.L., “Comments on “Boundary conditions for displacement experiments through short laboratory soil columns””, Soil Science Society of America Journal, 49, 1325, 1985.
Parlange, J.Y., Starr. J.L., van Genuchten, M.Th., Barry, D.A., Parker, J.C., “Exit condition for miscible displacement experiments in finite columns”, Soil Science, 153, 165-171, 1992.
Pérez Guerrero, J. S., Pimentel, L.G. G., Skaggs, T. H., and van Genuchten, M. Th., “Analytical solution for multi-species contaminant transport subject to sequential first-order decay reactions in finite media”, Transport Porous Med., 80, 357-373, 2009.
Pérez Guerrero, J. S., Pontedeiro, E.M., Skaggs, T. H., and van Genuchten, M.Th., “Analytical solutions of the one-dimensional advection-dispersion solute transport equation subject to time-dependent boundary conditions”, Chemical Engineering Journal, 221, 487-491, 2013.

Promma, K., “Approximate solution to simulate dissolved contaminant transport in groundwater from prism source”, J. Hydrol. 389, 381–389, 2010.
Srinivasan, V. and Clememt, T. P., “Analytical solutions for sequentially coupled one-dimensional reactive transport problems-Part I: Mathematical derivations”, Adv. Water Resour., 31, 203-218, 2008a.
Srinivasan, V. and Clememt, T. P., “Analytical solutions for sequentially coupled one-dimensional reactive transport problems-Part II: Special cases, implementation and testing”, Adv. Water Resour., 31, 219-232, 2008b.
Tu, Y.L., “Analytical solutions for two-dimensional advective-dispersive equation in a finite spatial domain (Master’s thesis)”, National Central University, Taoyuan, Taiwan, 2015.
Quezada, C.R., Clement, T.P., Lee, K.K., “Generalized solution to multi-dimensional multi-species transport equations coupled with a first-order reaction network involving distinct retardation factors”, Adv. Water Res. 27, 507–520, 2004.
van Genuchten, M.Th., “Determining transport parameters from solute displacement experiments”, Research Report, Vol. 118, U.S. Salinity Lab., Riverside, CA., 1980.
van Genuchten, M.Th., “Non-equilibrium transport parameters from miscible displacement experiments”, Research Report, Vol. 119, U.S. Salinity Lab., Riverside, CA., 1981.
van Genuchten, M.Th., Alves, W.J., “Analytical solutions of the one-dimensional convective-dispersive solute transport equation”, US Department of Agriculture Technical Bulletin No. 1661, 151 pp, 1982.
van Genuchten, M. T., “Convective-dispersive transport of solutes involved in sequential first-order decay reactions”, Comput. Geosci., 11, 129-147, 1985.
Yeh, G.T., “AT123D: Analytical Transient One-, Two-, and Three- Dimensional Simulation of Waste Transport in the Aquifer System”, ORNL-5602 Ridge National Laboratory, Oak, 1981.
指導教授 陳瑞昇(Jui-Sheng Chen) 審核日期 2022-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明