博碩士論文 109326009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.15.151.214
姓名 謝長樺(Chang-Hua Hsieh)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 添加污泥抑制飛灰熱處理過程之戴奧辛再生成效率探討
(Effectiveness of Applying Sewage Sludge as PCDD/F Formation Inhibitor in Thermal Treatment of Fly Ash)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-1以後開放)
摘要(中) 隨著人口持續成長以及科技的高度發展,都市固體廢棄物(Municipal Solid Waste,簡稱MSW)及事業廢棄物(Industrial Waste,簡稱IW)的處理處置問題也日趨嚴重。都市固體廢棄物焚化量的增加意味將有大量焚化飛灰產生,因為飛灰含有毒物質如戴奧辛及重金屬等,需經過適當處理才能進行處置或再利用。本研究以生活污泥為抑制劑應用於飛灰熱裂解,以提高都市固體廢棄物焚化爐飛灰中 PCDD/Fs的破壞效率。結果表明水洗後飛灰之氯含量由原本的16.48 ± 0.78 wt% 降低至10.45 ± 0.56 wt%,顯示水洗可有效降低飛灰中的氯化物含量,也提升飛灰熱解過程PCDD/Fs的破壞效率。污水污泥經加熱產生之硫氧化物及氮化合物可毒化催化金屬及佔據催化點位,有效抑制前驅物異相催化反應與De Novo synthesis反應,降低PCDD/Fs生成。350℃之熱裂解結果顯示添加不同比率之污泥對PCDD/Fs之質量濃度去除率皆達99%以上、毒性當量濃度去除率則皆達96%以上。綜合三種溫度(即250℃、300℃及350℃)與不同WFA/DSS質量比結果得知最佳條件為350F5S5,在反應5分鐘後毒性當量濃度降至0.89 ng I-TEQ/g-WFA,符合國內法規限值。250F1S0、300F1S0及350F1S0的實驗結果顯示於250 ~ 400℃之溫度區間是De Novo synthesis反應劇烈生成區間,且反應溫度降低使熱裂解效率降低,使De Novo synthesis反應速率提升。在350F5S5條件下由不同反應時間之測試結果顯示系統之操作時間控制於10分鐘可達歐盟最終廢棄物再利用標準(European End of Waste criteria, 20 pg TEQ/g)
摘要(英) With the continuous growth of population and high development of technology, many environmental pollution problems including the disposal of municipal solid waste (MSW) and industrial waste (IW) have arisen. With increasing municipal solid waste being incinerated, the amount of fly ash generated will also increase. Because fly ash contains various toxic substances, it needs to be treated before disposal or reuse. Water washing and suppression via pyrolysis can improve the destruction efficiency of PCDD/Fs in fly ash generated from municipal solid waste incinerators. The results showed that after washing the chloride content of fly ash was reduced from 16.48 ± 0.78 wt% to 10.45 ± 0.56 wt%. Since sulfur oxides and nitrogen-containing compounds generated by the heating of sewage sludge poison the catalytic metals and occupy the active sites, they can effectively inhibit precursor formation and De Novo synthesis reaction, and PCDD/F concentration was reduced. The results of the pyrolysis temperature at 350℃ show that the PCDD/F reduction efficiency based on mass concentration are all over 99% and the reduction efficiency based on TEQ concentration are all over 96% under each operating condition. Based on the results of different WFA/DSS mass ratios at three temperatures, the best condition is 350F5S5, and the TEQ concentration was reduced to 0.89 ng I-TEQ/g-WFA with 5 minutes of reaction. The results of 250F1S0, 300F1S0, and 350F1S0 showed that the De Novo synthesis reaction was significant at 250~400 ℃, and decreasing reaction temperature is favorable for De Novo synthesis reaction. The results obtained for 350F5S5 of different reaction times show that extending the reaction time to 10 minutes can further reduce PCDD/F TEQ concentration to meet the European End of Waste criteria (20 pg TEQ/g).
關鍵字(中) ★ 戴奧辛
★ 熱裂解
★ 抑制劑
★ 都市垃圾焚化爐
★ 脫氯反應
關鍵字(英) ★ Dioxin
★ Thermal pyrolysis
★ Inhibitors
★ Municipal solid waste incineration
★ Dechlorination
論文目次 摘要 I
ABSTRACT II
目錄 III
圖目錄 VI
表目錄 IX
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 4
2.1 戴奧辛之基本特性 4
2.2 污水污泥之基本特性 7
2.3 戴奧辛的來源及生成機制 7
2.3.1 戴奧辛的來源 7
2.3.2 戴奧辛之生成機制 9
2.4 去除固體物中戴奧辛之技術 11
2.4.1 穩定化/固化處理法 11
2.4.2 化學分離法 13
2.4.3 熱處理技術 16
2.5 減少戴奧辛生成 18
2.5.1 避免戴奧辛前驅物質及催化金屬 18
2.5.2 抑制戴奧辛生成機制 20
第三章 研究方法 25
3.1 研究流程與架構 25
3.2 飛灰與污泥樣品的採集與 27
3.3 熱裂解系統 27
3.4 樣品淨化與分析 28
3.5 實驗藥品及儀器設備 29
3.5.1 實驗藥品 29
3.5.2 實驗鋼瓶 30
3.5.3 實驗設備 31
3.6 研究相關計算公式 34
第四章 結果與討論 35
4.1 焚化飛灰及污水污泥之基本分析 35
4.1.1 MSWI-FA之元素分析 35
4.1.2 污水污泥之元素分析 36
4.1.3 DSS之X射線光電子能譜儀(XPS)表面化學態鑑定 38
4.2 熱裂解試驗 41
4.2.1 4.2.1 FA及WFA之PCDD/Fs濃度 41
4.2.2 250℃之熱裂解試驗 45
4.2.3 300℃之熱裂解試驗 46
4.2.4 350℃之熱裂解試驗 52
4.2.5 不同反應時間之熱裂解試驗 54
4.2.6 不同氧氣含量之熱裂解試驗 58
4.2.7 熱裂解試驗之尾氣分析 62
4.3 綜合討論 63
第五章 結論與建議 66
5.1 結論 66
5.2 建議 67
參考文獻 68
附錄 77
參考文獻 Ahmad, M. R., Chen, B., Yousefi Oderji, S., & Mohsan, M. (2018). Development of a new bio-composite for building insulation and structural purpose using corn stalk and magnesium phosphate cement. Energy and Buildings, 173, 719-733.
Altarawneh, M., Dlugogorski, B. Z., Kennedy, E. M., & Mackie, J. C. (2009). Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Progress in Energy and Combustion Science, 35(3), 245-274.
Ballschmiter, K., Zoller, W., Buchert, H., & Class, T. (1985). Correlation between substitution pattern and reaction pathway in the formation of polychlorodibenzofurans. Fresenius′ Zeitschrift für Analytische Chemie, 322(6), 587-594.
Birat, J. P. (2020). Society, materials, and the environment: the case of steel. Metals, 10(3).
Chandler, A. J., Van der sloot, H. A., Eighmy, T. T., Kosson, D. S., Hjelmar, O., Hartlén, J., Vehlow, J., & Sawell, S. E. (1997). Municipal Solid Waste Incinerator Residues: Elsevier.
Chang, M.B., Cheng, Y.C., & Chi, K.H. (2006). Reducing PCDD/F formation by adding sulfur as inhibitor in waste incineration processes. Science of The Total Environment, 366(2), 456-465.
Chen, H. L., Su, H. J., Guo, Y. L., Liao, P. C., Hung, C. F., & Lee, C. C. (2006). Biochemistry examinations and health disorder evaluation of Taiwanese living near incinerators and with low serum PCDD/Fs levels. Science of The Total Environment, 366(2), 538-548.
Chen, T., Zhan, M. X., Lin, X. Q., Li, X. D., Lu, S. Y., Yan, J. H., Buekens, A., & Cen, K. F. (2014). Inhibition of the de novo synthesis of PCDD/Fs on model fly ash by sludge drying gases. Chemosphere, 114, 226-232.
Chen, Y. Q., McLachlan, M. S., Kaserzon, S., Wang, X. Y., Weijs, L., Gallen, M., Toms, L. M. L., Li, Y., Aylward, L. L., Sly, P. D., & Mueller, J. F. (2016). Monthly variation in faeces:blood concentration ratio of persistent organic pollutants over the first year of life: a case study of one infant. Environmental Research, 147, 259-268.
Chen, Z., Zhang, S., Lin, X., & Li, X. (2020a). Decomposition and reformation pathways of PCDD/Fs during thermal treatment of municipal solid waste incineration fly ash. Journal of Hazardous Materials, 394.
Chen, Z., Yu, G. W., Zou, X. Y., & Wang, Y. (2020b). Co-disposal of incineration fly ash and sewage sludge via hydrothermal treatment combined with pyrolysis: Cl removal and PCDD/F detoxification. Chemosphere, 260, 127632.
Chen, Z. L., Lin, X. Q., Lu, S. Y., Li, X. D., & Yan, J. H. (2019). Suppressing formation pathway of PCDD/Fs by S-N-containing compound in full-scale municipal solid waste incinerators. Chemical Engineering Journal, 359, 1391-1399.
Choudhry, G. G., & Hutzinger, O. (1983). Mechanistic Aspects of the Thermal Formation of Halogenated Organic Compounds Including Polychlorinated dibenzo-p-dioxins (Vol. 4): CRC Press.
Düwel, U., Nottrodt, A., & Ballschmiter, K. (1990). Simultaneous sampling of PCDD/PCDF inside the combustion chamber and on four boiler levels of a waste incineration plant. Chemosphere, 20(10), 1839-1846.
Dickson, L. C., Lenoir, D., & Hutzinger, O. (1992). Quantitative comparison of de novo and precursor formation of polychlorinated dibenzo-p-dioxins under simulated municipal solid waste incinerator postcombustion conditions. Environmental Science & Technology, 26, 1828.
Mackay D., Shiu W. Y., Lee S. C. (2006). Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. 2 (2nd Edition ed.). Boca Raton: CRC Press.
Everaert, K., & Baeyens, J. (2002). The formation and emission of dioxins in large scale thermal processes. Chemosphere, 46(3), 439-448.
Gullett, B. K., Bruce, K. R., & Beach, L. O. (1992). Effect of sulfur dioxide on the formation mechanism of polychlorinated dibenzodioxin and dibenzofuran in municipal waste combustors. Environmental Science & Technology, 26(10), 1938-1943.
Habert, G., Miller, S. A., John, V. M., Provis, J. L., Favier, A., Horvath, A., & Scrivener, K. L. (2020). Environmental impacts and decarbonization strategies in the cement and concrete industries. Nature Reviews Earth and Environment, 1(11), 559-573.
Hagenmaier, H., Kraft, M., Brunner, H., & Haag, R. (1987). Catalytic effects of fly ash from waste incineration facilities on the formation and decomposition of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Environmental Science & Technology, 21, 1080.
Hagenmaier, H., Kraft, M., Brunner, H., & Haag, R. (1987). Catalytic effects of fly ash from waste incineration facilities on the formation and decomposition of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Environmental Science & Technology, 21(11), 1080-1084.
Hung, P. C., Chen, Q. H., & Chang, M. B. (2013). Pyrolysis of MWI fly ash – Effect on dioxin-like congeners. Chemosphere, 92(7), 857-863.
Ide, Y., Kashiwabara, K., Okada, S., Mori, T., & Hara, M. (1996). Catalytic decomposition of dioxin from MSW incinerator flue gas. Chemosphere, 32(1), 189-198.
Isosaari, P., Tuhkanen, T., & Vartiainen, T. (2001). Use of olive oil for soil extraction and ultraviolet degradation of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environmental Science & Technology, 35(6), 1259-1265.
Ja′baz, I., Jiao, F., Wu, X., Yu, D., Ninomiya, Y., & Zhang, L. (2017). Influence of gaseous SO2 and sulphate-bearing ash deposits on the high-temperature corrosion of heat exchanger tube during oxy-fuel combustion. Fuel Processing Technology, 167, 193-204.
Khodadoust, A. P., Bagchi, R., Suidan, M. T., Brenner, R. C., & Sellers, N. G. (2000). Removal of PAHs from highly contaminated soils found at prior manufactured gas operations. Journal of Hazardous Materials, 80(1), 159-174.
Kitamura, M., & Kasai, A. (2007). Cigarette smoke as a trigger for the dioxin receptor-mediated signaling pathway. Cancer Letters, 252(2), 184-194.
Lam, C. H. K., Ip, Alvin W. M., Barford, John P., & McKay, G. (2010). Use of incineration MSW ash: a review. Sustainability, 2(7).
Lindberg, D., Molin, C., & Hupa, M. (2015). Thermal treatment of solid residues from WtE units: A review. Waste Management, 37, 82-94.
Lippert, T., Wokaun, A., & Lenoir, D. (1991). Surface reactions of brominated arenes as a model for the formation of chlorinated dibenzodioxins and -furans in incineration: inhibition by ethanolamine. Environmental Science & Technology, 25(8), 1485-1489.
Lomnicki, S., & Dellinger, B. (2003). A detailed mechanism of the surface-mediated formation of PCDD/F from the oxidation of 2-chlorophenol on a CuO/silica surface. The Journal of Physical Chemistry A, 107(22), 4387-4395.
Luijk, R., Dorland, C., Kapteijn, F., & Govers, H. A. J. (1993). The formation of PCDDs and PCDFs in the catalysed combustion of carbon: implications for coal combustion. Fuel, 72(3), 343-347.
Lundin, L., & Marklund, S. (2007). Thermal degradation of PCDD/F, PCB and HCB in municipal solid waste ash. Chemosphere, 67(3), 474-481.
Lundin, L., & Marklund, S., (2005). Thermal degradation of PCDD/F in municipal solid waste ashes in sealed glass ampules. Environmental Science & Technology, 39(10), 3872-3877.
Minomo, K., Ohtsuka, N., Nojiri, K., Hosono, S., & Kawamura, K. (2011). Polychlorinated dibenzo-p-dioxins, dibenzofurans, and dioxin-like polychlorinated biphenyls in rice straw smoke and their origins in Japan. Chemosphere, 84(7), 950-956.
Mohd Hasan, M. R., Chew, J. W., Jamshidi, A., Yang, X., & Hamzah, M. O. (2019). Review of sustainability, pretreatment, and engineering considerations of asphalt modifiers from the industrial solid wastes. Journal of Traffic and Transportation Engineering (English Edition), 6(3), 209-244.
Nidheesh, P. V., & Kumar, M. S. (2019). An overview of environmental sustainability in cement and steel production. Journal of Cleaner Production, 231, 856-871.
Okey, Allan B., Riddick, David S., & Harper, Patricia A. (1994). The ah receptor: Mediator of the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Toxicology Letters, 70(1), 1-22.
Olie, K., Vermeulen, P. L., & Hutzinger, O. (1977). Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in the Netherlands. Chemosphere, 6(8), 455-459.
Pandelova, M., Lenoir, D., & Schramm, K. W. (2007). Inhibition of PCDD/F and PCB formation in co-combustion. Journal of Hazardous Materials, 149(3), 615-618.
Peng, Y. Q., Chen, J. H., Lu, S. Y., Huang, J. X., Zhang, M. M., Buekens, A., Li, X. D., & Yan, J. H., (2016). Chlorophenols in municipal solid waste incineration: a review. Chemical Engineering Journal, 292, 398-414.
Peng, Z., Weber, R., Ren, Y., Wang, J., Sun, Y., & Wang, L. (2020). Characterization of PCDD/Fs and heavy metal distribution from municipal solid waste incinerator fly ash sintering process. Waste Management, 103, 260-267.
Qian, L. X., Wang, Y. F., Liu, M. L., Hu, Y. L., Chun, T. J., Meng, Q. M., Long, H. M., & Wang, Y. (2021). Performance evaluation of urea injection on the emission reduction of dioxins and furans in a commercial municipal solid waste incinerator. Process Safety and Environmental Protection, 146, 577-585.
Quina, Margarida J., Bordado, João C., & Quinta-Ferreira, Rosa M. (2008). Treatment and use of air pollution control residues from MSW incineration: An overview. Waste Management, 28(11), 2097-2121.
Raghunathan, K., & Gullett, Brian K. (1996). Role of sulfur in reducing PCDD and PCDF formation. Environmental Science & Technology, 30(6), 1827-1834.
Renberg, L., Johansson, N. G., & Christian, B. (1995). Destruction of PCDD and PCDF in bleached pulp by chlorine dioxide treatment. Chemosphere, 30(9), 1805-1811.
Rigby, S., Limpus, C., Papke, O., Blanchard, W., Connell, D., & Gaus, C. (2004). Evaluating spatial patterns of dioxins in sediments to aid determination of potential implications for marine reptiles. Organohalogen Compound, 66.
Ruokojärvi, P., Asikainen, A., Ruuskanen, J., Tuppurainen, K., Mueller, C., Kilpinen, P., & Yli-Keturi, N. (2001). Urea as a PCDD/F inhibitor in municipal waste incineration. Journal of the Air & Waste Management Association, 51(3), 422-431.
Ruokojärvi, P., Ruuskanen, J., Ettala, M., Rahkonen, P., & Tarhanen, J. (1995). Formation of polyaromatic hydrocarbons and polychlorinated organic compounds in municipal waste landfill fires. Chemosphere, 31, 3899-3908.
Silva, R. V., de Brito, J., Lynn, C. J., & Dhir, R. K. (2019). Environmental impacts of the use of bottom ashes from municipal solid waste incineration: A review. Resources, Conservation and Recycling, 140, 23-35.
Son, D. S., & Rozman, K. K. (2002). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces plasminogen activator inhibitor-1 through an aryl hydrocarbon receptor-mediated pathway in mouse hepatoma cell lines. Archives of Toxicology, 76(7), 404-413.
Stanmore, B. R. (2004). The formation of dioxins in combustion systems. Combustion and Flame, 136(3), 398-427.
Trinh, M. M., & Chang, M. B. (2021). Catalytic pyrolysis: New approach for destruction of POPs in MWIs fly ash. Chemical Engineering Journal, 405.
Tuppurainen, K., Asikainen, A., Ruokojärvi, P., & Ruuskanen, J. (2003). Perspectives on the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during municipal solid waste (MSW) incineration and other combustion processes. Accounts of Chemical Research, 36(9), 652-658.
Van den Berg, M., Birnbaum, L.S., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N., & Peterson, R. E. (2006). The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological Sciences, 93(2), 223-241.
Vogg, H., & Stieglitz, L. (1986a). Thermal behavior of PCDD/PCDF in fly ash from municipal incinerators. Chemosphere, 15(9), 1373-1378.
Vogg, H., & Stieglitz, L. (1986b). Thermal behavior of PCDD/PCDF in fly ash from municipal incinerators. Chemosphere, 15, 1378.
Wang, Y. F., Chao, H. R., Wu, C. H., Wang, L. C., Chang C., Guo P., Yang, H. H., Lin, D. Y., & Tsou, T. C. (2009). Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from a heavy oil-fueled power plant in northern Taiwan. Journal of Hazardous Materials, 163(1), 266-272.
Witter, E., & Lopez-Real, J. (1988). Nitrogen losses during the composting of sewage sludge, and the effectiveness of clay soil, zeolite, and compost in adsorbing the volatilized ammonia. Biological Wastes, 23(4), 279-294.
Xiang, P. (2018). The study on performance of asphalt mortar and mixture mixed with MSWI fly ash, Hunan University, 67.
Xu, Q., &Han, L. (2010). Transition metal-catalyzed selective hydrophosphorylation reactions. Science China Chemistry, 40(7), 802-826
Xue, Y., & Liu, X. (2021). Detoxification, solidification and recycling of municipal solid waste incineration fly ash: A review. Chemical Engineering Journal, 420, 130349.
Yakamercan, E., Ari, A., & Aygün, A. (2021). Land application of municipal sewage sludge: Human health risk assessment of heavy metals. Journal of Cleaner Production, 319, 128568.
Yan, M., Qi, Z. F., Li, X. D., Chen, T., Lu, S. Y., Buekens, A. G., Olie, K.,& Yan, J. H. (2012). Chlorobenzene formation from fly ash: Effect of moisture, chlorine gas, cupric chloride, urea, ammonia, and ammonium sulfate. Environmental Engineering Science, 29(9), 890-896.
Yang, G., Zhang, G., & Wang, H. (2015). Current state of sludge production, management, treatment and disposal in China. Water Research, 78, 60-73.
Yim, S. D., Koh, D. J., & Nam, I. S. (2002). A pilot plant study for catalytic decomposition of PCDDs/PCDFs over supported chromium oxide catalysts. Catalysis Today, 75(1), 269-276.
Yu, Y., Zheng, M., Li, X., & He, X. (2012). Operating condition influences on PCDD/Fs emissions from sinter pot tests with hot flue gas recycling. Journal of Environmental Sciences, 24(5), 875-881.
Zacco, A., Borgese, L., Gianoncelli, A., Struis, R. P. W. J., Depero, L. E., & Bontempi, E. (2014). Review of fly ash inertisation treatments and recycling. Environmental Chemistry Letters, 12(1), 153-175.
Zhang, R. Z., Wang, L. Z., Yin, R. H., & Luo, Y. H. (2020). Alteration in formation behaviors of chloroaromatic precursors of PCDD/Fs: An experimental study on the effect of extrinsic and intrinsic oxygen on chlorination. Chemosphere, 243, 125319.
Zhang, Y., Wang, L., Chen, L., Ma, B., Zhang, Y., Ni, W., & Tsang, D. C. W. (2021). Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives. Journal of Hazardous Materials, 411, 125-132.
王世忠, 何志軒, 胡紹華, & 陳佳陽. (2006). 都會下水污泥環境特性與資源化之途徑的回顧與展望.大漢學報(21), 231-249.
潘時正. (2002). 下水污泥灰渣特性及應用於水泥砂漿之研究. (博士), 國立中央大學
鄭銚強. (2004). 焚化系統中抑制戴奧辛生成之初步研究 (碩士), 國立中央大學
指導教授 張木彬(Moo-Been Chang) 審核日期 2022-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明