博碩士論文 109326020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:3.15.31.50
姓名 孫耀鴻(Yao-Hung Sun)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以海水提升流體化床磷酸銨鎂結晶 之可行性研究
(A feasibility study of using seawater to enhance the efficiency of crystallization of magnesium ammonium phosphate in fluidized bed reactor)
相關論文
★ 以SDI與MFI指標評估工業廢水回收再利用之機會:以某散熱器製造業為例★ 以反應曲面法探討流體化床結晶回收磷酸亞鐵之影響因子
★ 活性污泥異營與自營脫硝 反應動力特性之研究★ 沼渣施用對土壤及滲出水之重金屬成份影響分析
★ 脈衝式曝氣對沉浸式薄膜生物處理系統 積垢控制之探討★ 以聚合硫酸鐵進行污泥調理脫水之綜合效能評估
★ 以低亞硫酸鈉進行自營性脫硝反應之可行性研究★ 污泥脫水濾液無機物成分之結垢潛勢研究
★ 硫氮比、pH與溶氧對還原性硫化物自營脫硝反應之影響★ 超音波水解生物污泥機制探討
★ 生物除氮程序(MLE Process)效能評估及污泥活性探討★ 活性污泥除氮程序(OAO Process)效能評估與設計參數探討
★ 廢水處理廠 COD 和 TN 水質細分類 與脫硝效率之研究★ 硫代硫酸鹽自營性脫硝之反應動力與亞硝酸鹽氮累積特性探討
★ 以RO濃排水提升流體化床磷酸鹽結晶之可行性研究★ 以超聲波輔助化學氧化法處理廢棄 NF 膜之反應特性與膜再利用可行性評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 磷污染是導致全球水體優養化的最重要因素之一,它威脅著全球水生生態系統,並可能通過產生藍藻毒素導致巨大的經濟損失甚至損害人類健康,因此,從廢水中回收磷不僅是水生環境保護的必要條件,也是人類可持續發展的必要條件。本研究預計使用流體化床結晶技術,從厭氧消化脫水濾液中以磷酸銨鎂結晶的方式回收磷,並探討均相結晶其介穩區的範圍,由於生產磷酸銨鎂的成本大多來自鎂的使用,大約佔整個技術成本的75 %。因此本研究期望能使用海水作為替代鎂源,評估其可行性,最後探討最佳流體化床的結晶條件。
首先使用粒徑分析儀來分析磷酸銨鎂結晶過程中顆粒變化,定義出其介穩定區的範圍,以避免在結晶過程中產生過多的微小晶體影響結晶效能,並使用反應曲面法(Response Surface Methodology, RSM)進行最佳結晶條件之預測。結果顯示在Mg2+濃度為1.62 mmol/L時,合成純廢水的介穩定區落在pH 7.53~6.39之間,而加入合成海水的結晶介穩定區pH值則落在7.34及6.87之間。透過Visual MINITEQ進行溶液中沉澱物成分分析,可以發現溶液中不只有磷酸銨鎂還有羥基磷灰石的成分,但是由於合成海水中的Ca2+離子濃度偏低,所以溶液中大部分的沉澱物成分應為磷酸銨鎂,透過反應式計算可以得知在Mg/P比0.5的時候,溶液中將會形成111.9 mg的磷酸銨鎂,而羥基磷灰石僅會生成22.4 mg。以反應曲面法預測之最佳結晶操作條件為pH 9.5 及Mg/P比2.5,反應時間66分鐘的情況下可以達到最佳的磷去除率(95.4%)以及結晶率(85.7 %),在均相結晶的實驗中,反應時間66分鐘時可以達到94.5 %的磷去除率及80.1 %的結晶率,非常接近反應曲面法預測的95.4 %磷去除率以及85.7 %結晶率。
SEM分析結果表明,當水中含有懸浮固體時,懸浮固體會被包裹在晶體中,導致磷酸銨鎂結晶變差,使離子不能緊密地結合到晶核中,此外在收集和乾燥過程中,部分的懸浮固體可能會從顆粒表面脫落,導致顆粒表面出現裂紋和形狀不規則,篩分析也表明實際廢水的結晶,由於懸浮固體不是均勻的從晶核中成長,導致晶體中固體含量差異大,此亦為形成的磷酸銨鎂晶體粒徑多樣性之原因之一。
EDS 分析表明,實際廢水結晶中 Mg、N、P 和 O 的原子百分比分別為 6.3 %、4.7 %、5.0 % 和 52.70 %,表明其組成與磷酸銨鎂的化學計量十分相似,然後根據EDS分析的平均原子百分比,經過計算磷酸銨鎂的純度為72.3 %,其餘的化合物歸因於磷酸鎂的形成,而且可以發現Ca2+的原子含量僅有0.1 %,Ca2+離子未造成影響可以歸因為(1)本實驗將操作條件控制在適合的介穩定區,在此條件下反應器內適合磷酸銨鎂結晶,所以沒有明顯與其他離子產生化合物。(2)本研究的Ca/Mg 摩爾比僅有0.2,較低的Ca2+離子濃度所以未發現有明顯影響。(3)本實驗高的N/P 摩爾比,增加了磷酸銨鎂結晶的動力學,並最大程度抑制了Ca2+離子的影響。
篩分析的結果顯示,試驗10天後實際廢水所得粒徑主要分布於1.18-2.00 mm,比例高達70.2 %,而粒徑0.85-1.18 mm也有25 %的比例。實際廢水的粒徑展現了尺寸的多樣性,水中的懸浮固體亦為原因之一。然而合成廢水則展現了高度一致的粒徑大小,1.18-2.00 mm的晶體高達98.9 %,剩下小於0.30 mm的晶體可以歸因於乾燥過程中剝落的晶體。
摘要(英) Phosphorus pollution is the most important factor leading to global water eutrophication. It threatens aquatic ecosystems worldwide, and may lead to huge economic losses and even damage to human health through the production of cyanobacterial toxins. Therefore, recovery of phosphorus from wastewater is not only a necessary condition for aquatic environmental protection, but also a necessary condition for sustainable human development. This study try to use the fluidized bed crystallization technology to recover phosphorus from anaerobic digestion dewatered filtrate by crystallization of magnesium ammonium phosphate, and to explore its metastable zone for homogeneous crystallization. Since most of the cost of producing magnesium ammonium phosphate is mainly influenced by the cost of magnesium source which can contribute up to 75% of overall costs. Therefore, this study expects to use seawater as an alternative magnesium source, evaluate its feasibility, and finally explore the optimal fluidized bed crystallization conditions.
Firstly, use a particle size analyzer to analyze the particle changes during the crystallization of magnesium ammonium phosphate, and define the range of its metastable zone, to avoid the production of too many tiny crystals during the crystallization process and affect the crystallization efficiency. Use the Response Surface Methodology (RSM) to predict the optimal crystallization conditions. The results showed that when the Mg2+ concentration was 1.62 mmol/L, the metastable zone of synthetic wastewater was between pH 7.53 and 6.39. The pH of the crystallization metastable zone with the addition of synthetic seawater is between 7.34 and 6.87. Using Visual MINITEQ to analyze the composition of the precipitate in the solution, the results show that there are not only ammonium magnesium phosphate but also hydroxyapatite in the solution. However, due to the low concentration of Ca2+ ions in the synthetic seawater, most of the precipitate in the solution should be magnesium ammonium phosphate. Through the calculation of the reaction formula, it can be known that when M/P ratio 0.5, 111.9 mg of magnesium ammonium phosphate will be formed in the solution, while only 22.4 mg of hydroxyapatite will be formed. The optimal crystallization operating conditions predicted by the RSM are pH 9.5 and Mg/P ratio 2.5, and the best phosphorus removal ratio (95.4%) and crystallization ratio (85.7%) can be achieved when the reaction time is 66 minutes. In the experiment of homogeneous crystallization, 94.5% phosphorus removal ratio and 80.1% crystallization ratio can be achieved when the reaction time is 66 minutes, which is very close to the 95.4% phosphorus removal ratio and 85.7% crystallization ratio predicted by the RSM.
The results of SEM analysis show that when the solution contains suspended solids, the suspended solids will be encapsulated in the crystals, so that the ions cannot be tightly bound into the crystal nucleus, resulting in poor crystallization of magnesium ammonium phosphate. Suspended solids may be detached from the particle surface causing cracks and irregular shapes on the particle surface. The sieve analysis also shows that the crystallization of real wastewater, because the suspended solids are not uniformly encapsulated in the crystals, resulting in different suspended solids content in the crystals and on the surface, so the formed magnesium ammonium phosphate crystals have different size diversity.
EDS analysis showed that the atomic percentages of Mg, N, P and O in the real wastewater crystals were 6.3 %, 4.7 %, 5.0 % and 52.70 %, respectively, indicating that the composition is very similar to the stoichiometry of magnesium ammonium phosphate. According to the average atomic percentage of EDS analysis, the purity of magnesium ammonium phosphate is calculated to be 72.3 %, the rest of the compounds are attributed to the formation of magnesium phosphate, and it can be found that the atomic content of Ca2+ is only 0.1 %. The absence of Ca2+ ions can be attributed to (1) this experiment controls the operating conditions in a suitable metastable region, and the reactor is suitable for crystallization of magnesium ammonium phosphate, so there is no obvious compound with Ca2+ ions. (2) The Ca/Mg molar ratio in this study was only 0.2, and no obvious effect was found because of the lower Ca2+ ion concentration. (3) The high N:P molar ratio in this experiment increased the kinetics of crystallization of magnesium ammonium phosphate and suppressed the effect of Ca2+ ions.
The results of sieve analysis showed that the particle size of the real wastewater was mainly distributed in 1.18-2.00 mm after 10 days of the experiment, with a proportion of up to 70.2%, and the particle size of 0.85-1.18 mm also had a proportion of 25%. The particle size of real wastewater shows a variety of sizes, which can be attributed to the suspended solids in the water, in addition, during the collection and drying process, part of the suspended solids may be detached from the particle surface, resulting in cracks and irregular shapes on the particle surface , because the suspended solids are not uniformly wrapped in the crystals, resulting in different suspended solids content in the crystals and on the surface, so the formed magnesium ammonium phosphate crystals have different size diversity. However, the synthetic wastewater showed a highly consistent size, with up to 98.9 % of the crystals of 1.18-2.00 mm, and the remaining crystals smaller than 0.30 mm could be attributed to the exfoliated crystals during the drying process.
關鍵字(中) ★ 磷酸銨鎂
★ 均相結晶
★ 流體化床
★ 介穩定區
關鍵字(英) ★ Struvite
★ Homogeneous crystallization
★ Fluidized bed
★ Metastable zone
論文目次 目錄
摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xii
第1章 前言 1
1.1研究背景 1
1.2研究目的 3
第2章 文獻回顧 5
2.1磷循環 5
2.1.1陸地的磷循環 6
2.1.2海洋的磷循環 6
2.1.3磷循環失衡 7
2.2流體化床結晶機制 8
2.2.1流體化床原理 8
2.2.2流體化床結晶機制 10
2.2.3異相和均相結晶 11
2.2.4磷溶解度積 12
2.2.5結晶過飽和的熱力學 13
2.2.6介穩定區 14
2.2.7流體化床結晶技術及應用 16
2.3磷酸銨鎂結晶反應影響因子 19
2.3.1磷酸銨鎂 19
2.3.2氨源及磷源 20
2.3.3鎂源(海水) 21
2.3.4影響磷酸銨鎂結晶操作參數 23
2.4最佳化設計 28
2.4.1反應曲面法(Response Surface Methodology,RSM) 28
2.4.2中央合成設計(Central composite design experiments,CCD) 28
2.4.3迴歸模型 31
2.4.4迴歸模型係數之顯著性檢定:t檢定 31
2.4.5迴歸模型之顯著性檢定 32
2.4.6判定係數(R2) 33
2.4.7殘差值分析 33
第3章 研究方法 35
3.1實驗流程與步驟 35
3.2實驗方法 37
3.2.1先期實驗 37
3.2.2用反應曲面法進行最佳操作條件預測 39
3.2.3實際廢水流體化床均相結晶實驗 41
3.3研究設備及藥品 46
3.3.1 分光光度計(UV-Vis) 47
3.3.2 海水成分分析(ICP-OES) 48
3.3.3 表面型態(SEM)及元素分析(EDS) 48
3.3.4 X光繞射分析儀(XRD) 49
3.3.5 篩分析 50
第4章 結果與討論 51
4.1 介穩定區 51
4.1.1合成廢水之介穩定區範圍 51
4.1.2 介穩定區Visual MINTEQ沉澱物分析 54
4.1.3 介穩定區粒徑分析(磷酸銨鎂) 57
4.1.4 介穩定區粒徑分析(合成海水磷酸銨鎂) 64
4.2反應曲面法進行最佳操作條件預測 71
4.2.1 反應曲面法批次流體化床結晶實驗 71
4.2.2 磷酸銨鎂結晶反應曲面法-磷去除率最佳化分析 74
4.2.3 磷酸銨鎂結晶反應曲面法-磷結晶率最佳化分析 78
4.2.4 磷酸銨鎂結晶反應曲面法最佳條件預測 84
4.3實際廢水流體化床均相長期結晶實驗 85
4.3.1反應曲面法最佳條件結晶實驗 85
4.3.2實際廢水流體化床均相長期結晶貴儀分析-SEM 86
4.3.3實際廢水流體化床均相長期結晶貴儀分析-EDS 89
4.3.4實際廢水流體化床均相長期結晶貴儀分析-XRD 91
4.3.5實際廢水流體化床均相長期結晶篩分析 93
第5章 結論與建議 96
5.1結論 96
5.2建議 98
參考文獻 99
參考文獻 Aage, H. K., Andersen, B. L., Blom, A., & Jensen, I. (1997). The solubility of struvite. Journal of Radioanalytical and Nuclear Chemistry, 223(1), 213-215. doi:10.1007/BF02223387
Agrawal, S., Guest, J. S., & Cusick, R. D. (2018). Elucidating the impacts of initial supersaturation and seed crystal loading on struvite precipitation kinetics, fines production, and crystal growth. Water Research, 132, 252-259. doi:https://doi.org/10.1016/j.watres.2018.01.002
Aguado, D., Barat, R., Bouzas, A., Seco, A., & Ferrer, J. (2019). P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources. Science of The Total Environment, 672, 88-96. doi:https://doi.org/10.1016/j.scitotenv.2019.03.485
Ali, M. I., & Schneider, P. A. (2006). A fed-batch design approach of struvite system in controlled supersaturation. Chemical Engineering Science, 61(12), 3951-3961. doi:https://doi.org/10.1016/j.ces.2006.01.028
Arcas-Pilz, V., Rufí-Salís, M., Parada, F., Petit-Boix, A., Gabarrell, X., & Villalba, G. (2021). Recovered phosphorus for a more resilient urban agriculture: Assessment of the fertilizer potential of struvite in hydroponics. Science of The Total Environment, 799, 149424. doi:https://doi.org/10.1016/j.scitotenv.2021.149424
Ariyanto, E., Sen, T. K., & Ang, H. M. (2014). The influence of various physico-chemical process parameters on kinetics and growth mechanism of struvite crystallisation. Advanced Powder Technology, 25(2), 682-694. doi:https://doi.org/10.1016/j.apt.2013.10.014
Caddarao, P. S., Garcia-Segura, S., Ballesteros, F. C., Huang, Y.-H., & Lu, M.-C. (2018). Phosphorous recovery by means of fluidized bed homogeneous crystallization of calcium phosphate. Influence of operational variables and electrolytes on brushite homogeneous crystallization. Journal of the Taiwan Institute of Chemical Engineers, 83, 124-132. doi:https://doi.org/10.1016/j.jtice.2017.12.009
Capdevielle, A., Sýkorová, E., Béline, F., & Daumer, M.-L. (2014). Kinetics of struvite precipitation in synthetic biologically treated swine wastewaters. Environmental Technology, 35(10), 1250-1262. doi:10.1080/09593330.2013.865790
Childers, D. L., Corman, J., Edwards, M., & Elser, J. J. (2011). Sustainability Challenges of Phosphorus and Food: Solutions from Closing the Human Phosphorus Cycle. BioScience, 61(2), 117-124. doi:10.1525/bio.2011.61.2.6
Ferguson, S., Morris, G., Hao, H., Barrett, M., & Glennon, B. (2014). Automated self seeding of batch crystallizations via plug flow seed generation. Chemical Engineering Research and Design, 92(11), 2534-2541. doi:https://doi.org/10.1016/j.cherd.2014.01.028
Fromberg, M., Pawlik, M., & Mavinic, D. S. (2020). Induction time and zeta potential study of nucleating and growing struvite crystals for phosphorus recovery improvements within fluidized bed reactors. Powder Technology, 360, 715-730. doi:https://doi.org/10.1016/j.powtec.2019.09.067
Gui, L., Yang, H., Huang, H., Hu, C., Feng, Y., & Wang, X. (2022). Liquid solid fluidized bed crystallization granulation technology: Development, applications, properties, and prospects. Journal of Water Process Engineering, 45, 102513. doi:https://doi.org/10.1016/j.jwpe.2021.102513
Huang, H., Liu, J., & Ding, L. (2015). Recovery of phosphate and ammonia nitrogen from the anaerobic digestion supernatant of activated sludge by chemical precipitation. Journal of Cleaner Production, 102, 437-446. doi:https://doi.org/10.1016/j.jclepro.2015.04.117
Jiang, S., Wang, J., Qiao, S., & Zhou, J. (2021). Phosphate recovery from aqueous solution through adsorption by magnesium modified multi-walled carbon nanotubes. Science of The Total Environment, 796, 148907. doi:https://doi.org/10.1016/j.scitotenv.2021.148907
Jones, A. G. (2002). Crystallization process systems. Oxford; Boston: Butterworth-Heinemann.
Krishnamoorthy, N., Arunachalam, T., & Paramasivan, B. (2021). A comparative study of phosphorus recovery as struvite from cow and human urine. Materials Today: Proceedings. doi:https://doi.org/10.1016/j.matpr.2021.04.587
Krishnamoorthy, N., Dey, B., Unpaprom, Y., Ramaraj, R., Maniam, G. P., Govindan, N., . . . Paramasivan, B. (2021). Engineering principles and process designs for phosphorus recovery as struvite: A comprehensive review. Journal of Environmental Chemical Engineering, 9(5), 105579. doi:https://doi.org/10.1016/j.jece.2021.105579
Kumari, S., Jose, S., Tyagi, M., & Jagadevan, S. (2020). A holistic and sustainable approach for recovery of phosphorus via struvite crystallization from synthetic distillery wastewater. Journal of Cleaner Production, 254, 120037. doi:https://doi.org/10.1016/j.jclepro.2020.120037
Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review. Critical Reviews in Environmental Science and Technology, 39(6), 433-477. doi:10.1080/10643380701640573
Le, V.-G., Vo, D.-V. N., Nguyen, N.-H., Shih, Y.-J., Vu, C.-T., Liao, C.-H., & Huang, Y.-H. (2021). Struvite recovery from swine wastewater using fluidized-bed homogeneous granulation process. Journal of Environmental Chemical Engineering, 9(3), 105019. doi:https://doi.org/10.1016/j.jece.2020.105019
Le, V.-G., Vu, C.-T., Shih, Y.-J., Bui, X.-T., Liao, C.-H., & Huang, Y.-H. (2020). Phosphorus and potassium recovery from human urine using a fluidized bed homogeneous crystallization (FBHC) process. Chemical Engineering Journal, 384, 123282. doi:https://doi.org/10.1016/j.cej.2019.123282
Lee, S.-H., Yoo, B.-H., Lim, S. J., Kim, T.-H., Kim, S.-K., & Kim, J. Y. (2013). Development and validation of an equilibrium model for struvite formation with calcium co-precipitation. Journal of Crystal Growth, 372, 129-137. doi:https://doi.org/10.1016/j.jcrysgro.2013.03.010
Leng, Y., & Soares, A. (2021). The mechanisms of struvite biomineralization in municipal wastewater. Science of The Total Environment, 799, 149261. doi:https://doi.org/10.1016/j.scitotenv.2021.149261
Li, B., Huang, H. M., Boiarkina, I., Yu, W., Huang, Y. F., Wang, G. Q., & Young, B. R. (2019). Phosphorus recovery through struvite crystallisation: Recent developments in the understanding of operational factors. Journal of Environmental Management, 248, 109254. doi:https://doi.org/10.1016/j.jenvman.2019.07.025
Liu, B., Giannis, A., Zhang, J., Chang, V. W. C., & Wang, J.-Y. (2013). Characterization of induced struvite formation from source-separated urine using seawater and brine as magnesium sources. Chemosphere, 93(11), 2738-2747. doi:https://doi.org/10.1016/j.chemosphere.2013.09.025
Liu, Y., Kumar, S., Kwag, J.-H., & Ra, C. (2013). Magnesium ammonium phosphate formation, recovery and its application as valuable resources: a review. Journal of Chemical Technology & Biotechnology, 88(2), 181-189. doi:https://doi.org/10.1002/jctb.3936
Liu, Y. C., & Nagy, Z. K. (2020). Continuous Crystallization: Equipment and Operation. In Z. K. Nagy, A. El Hagrasy, & J. Litster (Eds.), Continuous Pharmaceutical Processing (pp. 129-192). Cham: Springer International Publishing.
Mehta, C. M., & Batstone, D. J. (2013). Nucleation and growth kinetics of struvite crystallization. Water Research, 47(8), 2890-2900. doi:https://doi.org/10.1016/j.watres.2013.03.007
Ohlinger, K., Young, T., & Schroeder, E. J. J. o. E. E. (1999). Kinetics Effects on Preferential Struvite Accumulation in Wastewater. 125, 730-737.
Pahunang, R. R., Ballesteros, F. C., de Luna, M. D. G., Vilando, A. C., & Lu, M.-C. (2019). Optimum recovery of phosphate from simulated wastewater by unseeded fluidized-bed crystallization process. Separation and Purification Technology, 212, 783-790. doi:https://doi.org/10.1016/j.seppur.2018.11.087
Ping, Q., Li, Y., Wu, X., Yang, L., & Wang, L. (2016). Characterization of morphology and component of struvite pellets crystallized from sludge dewatering liquor: Effects of total suspended solid and phosphate concentrations. Journal of Hazardous Materials, 310, 261-269. doi:https://doi.org/10.1016/j.jhazmat.2016.02.047
Rahaman, M. S., Mavinic, D. S., Meikleham, A., & Ellis, N. (2014). Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor. Water Research, 51, 1-10. doi:https://doi.org/10.1016/j.watres.2013.11.048
Rahman, M. M., Salleh, M. A. M., Rashid, U., Ahsan, A., Hossain, M. M., & Ra, C. S. (2014). Production of slow release crystal fertilizer from wastewaters through struvite crystallization – A review. Arabian Journal of Chemistry, 7(1), 139-155. doi:https://doi.org/10.1016/j.arabjc.2013.10.007
Ronteltap, M., Maurer, M., & Gujer, W. (2007). Struvite precipitation thermodynamics in source-separated urine. Water Research, 41(5), 977-984. doi:https://doi.org/10.1016/j.watres.2006.11.046
Roy, R. N., Finck, A., Blair, G., Tandon, H. J. A. g. f. i. n. m. F. F., & Bulletin, P. N. (2006). Plant nutrition for food security. 16, 368.
Ruttenberg, K. C. (2019). Phosphorus Cycle. In J. K. Cochran, H. J. Bokuniewicz, & P. L. Yager (Eds.), Encyclopedia of Ocean Sciences (Third Edition) (pp. 447-460). Oxford: Academic Press.
Santiviago, C., Peralta, J., & López, I. (2022). Phosphorus removal from wastewater through struvite crystallization in a continuous fluidized-bed reactor: An improved comprehensive model. Chemical Engineering Journal, 430, 132903. doi:https://doi.org/10.1016/j.cej.2021.132903
Shaddel, S., Grini, T., Andreassen, J.-P., Østerhus, S. W., & Ucar, S. (2020). Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: towards enhancing sustainability and economics of struvite crystallization. Chemosphere, 256, 126968. doi:https://doi.org/10.1016/j.chemosphere.2020.126968
Shih, Y.-J., Abarca, R. R. M., de Luna, M. D. G., Huang, Y.-H., & Lu, M.-C. (2017). Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions. Chemosphere, 173, 466-473. doi:https://doi.org/10.1016/j.chemosphere.2017.01.088
Song, L., Li, Z., Wang, G., Tian, Y., & Yang, C. (2021). Supersaturation control of struvite growth by operating pH. Journal of Molecular Liquids, 336, 116293. doi:https://doi.org/10.1016/j.molliq.2021.116293
Song, Y.-H., Qiu, G.-L., Yuan, P., Cui, X.-Y., Peng, J.-F., Zeng, P., . . . Qian, F. (2011). Nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization without chemical additions. Journal of Hazardous Materials, 190(1), 140-149. doi:https://doi.org/10.1016/j.jhazmat.2011.03.015
Thant Zin, M. M., & Kim, D.-J. (2019). Struvite production from food processing wastewater and incinerated sewage sludge ash as an alternative N and P source: Optimization of multiple resources recovery by response surface methodology. Process Safety and Environmental Protection, 126, 242-249. doi:https://doi.org/10.1016/j.psep.2019.04.018
Volpin, F., Chekli, L., Phuntsho, S., Cho, J., Ghaffour, N., Vrouwenvelder, J. S., & Kyong Shon, H. (2018). Simultaneous phosphorous and nitrogen recovery from source-separated urine: A novel application for fertiliser drawn forward osmosis. Chemosphere, 203, 482-489. doi:https://doi.org/10.1016/j.chemosphere.2018.03.193
Wang, C. C., Hao, X. D., Guo, G. S., & van Loosdrecht, M. C. M. (2010). Formation of pure struvite at neutral pH by electrochemical deposition. Chemical Engineering Journal, 159(1), 280-283. doi:https://doi.org/10.1016/j.cej.2010.02.026
Wang, F., Wei, J., Zou, X., Fu, R., Li, J., Wu, D., . . . Chen, H. (2019). Enhanced electrochemical phosphate recovery from livestock wastewater by adjusting pH with plant ash. Journal of Environmental Management, 250, 109473. doi:https://doi.org/10.1016/j.jenvman.2019.109473
Wang, J., Ye, X., Zhang, Z., Ye, Z.-L., & Chen, S. (2018). Selection of cost-effective magnesium sources for fluidized struvite crystallization. Journal of Environmental Sciences, 70, 144-153. doi:https://doi.org/10.1016/j.jes.2017.11.029
Wang, Q., Li, J.-s., Tang, P., Fang, L., & Poon, C. S. (2018). Sustainable reclamation of phosphorus from incinerated sewage sludge ash as value-added struvite by chemical extraction, purification and crystallization. Journal of Cleaner Production, 181, 717-725. doi:https://doi.org/10.1016/j.jclepro.2018.01.254
Wang, Y., Mou, J., Liu, X., & Chang, J. (2021). Phosphorus recovery from wastewater by struvite in response to initial nutrients concentration and nitrogen/phosphorus molar ratio. Science of The Total Environment, 789, 147970. doi:https://doi.org/10.1016/j.scitotenv.2021.147970
Ye, X., Ye, Z.-L., Lou, Y., Pan, S., Wang, X., Wang, M. K., & Chen, S. (2016). A comprehensive understanding of saturation index and upflow velocity in a pilot-scale fluidized bed reactor for struvite recovery from swine wastewater. Powder Technology, 295, 16-26. doi:https://doi.org/10.1016/j.powtec.2016.03.022
Zhang, Z., Yao, H., Wu, B., Wang, B., & Chen, J. (2021). Limited capacity of suspended particulate matter in the Yangtze River Estuary and Hangzhou Bay to carry phosphorus into coastal seas. Estuarine, Coastal and Shelf Science, 258, 107417. doi:https://doi.org/10.1016/j.ecss.2021.107417
Zin, M. M. T., Tiwari, D., & Kim, D.-J. (2020). Maximizing ammonium and phosphate recovery from food wastewater and incinerated sewage sludge ash by optimal Mg dose with RSM. Journal of Industrial and Engineering Chemistry, 86, 136-143. doi:https://doi.org/10.1016/j.jiec.2020.02.020
吳孟修. (2012). 以流體化床結晶技術處理半導體產業含氟廢水之案例探討. (碩士), 朝陽科技大學, 台中市. Retrieved from https://hdl.handle.net/11296/3c9d94
吳峻豪. (2013). 流體化床磷酸銨鎂結晶回收污水處理廠磷之研究. (碩士), 朝陽科技大學, 台中市. Retrieved from https://hdl.handle.net/11296/jy4r54
李茂松. (1993). 流體化床結晶技術在無機廢水處理上應用性研究. (碩士), 中原大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/hw5nfb
林, 李. (2013). 突破品質水準 : 實驗設計與田口方法之實務應用 (初版. ed.). 新北市: 全華圖書.
林惠玲, & 陳正倉. (2009). 統計學 : 方法與應用 (4版 ed.). 臺北市: 雙葉書廊.
洪再生. (1996). 流體化床結晶技術回收廢水中重金屬銅之探討. (碩士), 國立中央大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/v72hm5
陳政澤. (1995). 流體化床結晶反應槽回收廢水中重金屬鎘之研究. (碩士), 國立中央大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/ju237f
黃婷鈺. (2021). 以反應曲面法探討流體化床結晶回收磷酸亞鐵之影響因子. (碩士), 國立中央大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/84hx8e
葉怡成. (2001). 實驗計劃法 : 製程與產品最佳化 (初版 ed.). 臺北市: 五南.
劉志忠. (1998). 流體化床結晶法去除水中磷酸鹽之研究. (碩士), 國立中央大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/e56azw
指導教授 莊順興(Shun-Hsing Chuang) 審核日期 2022-9-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明