參考文獻 |
Aage, H. K., Andersen, B. L., Blom, A., & Jensen, I. (1997). The solubility of struvite. Journal of Radioanalytical and Nuclear Chemistry, 223(1), 213-215. doi:10.1007/BF02223387
Agrawal, S., Guest, J. S., & Cusick, R. D. (2018). Elucidating the impacts of initial supersaturation and seed crystal loading on struvite precipitation kinetics, fines production, and crystal growth. Water Research, 132, 252-259. doi:https://doi.org/10.1016/j.watres.2018.01.002
Aguado, D., Barat, R., Bouzas, A., Seco, A., & Ferrer, J. (2019). P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources. Science of The Total Environment, 672, 88-96. doi:https://doi.org/10.1016/j.scitotenv.2019.03.485
Ali, M. I., & Schneider, P. A. (2006). A fed-batch design approach of struvite system in controlled supersaturation. Chemical Engineering Science, 61(12), 3951-3961. doi:https://doi.org/10.1016/j.ces.2006.01.028
Arcas-Pilz, V., Rufí-Salís, M., Parada, F., Petit-Boix, A., Gabarrell, X., & Villalba, G. (2021). Recovered phosphorus for a more resilient urban agriculture: Assessment of the fertilizer potential of struvite in hydroponics. Science of The Total Environment, 799, 149424. doi:https://doi.org/10.1016/j.scitotenv.2021.149424
Ariyanto, E., Sen, T. K., & Ang, H. M. (2014). The influence of various physico-chemical process parameters on kinetics and growth mechanism of struvite crystallisation. Advanced Powder Technology, 25(2), 682-694. doi:https://doi.org/10.1016/j.apt.2013.10.014
Caddarao, P. S., Garcia-Segura, S., Ballesteros, F. C., Huang, Y.-H., & Lu, M.-C. (2018). Phosphorous recovery by means of fluidized bed homogeneous crystallization of calcium phosphate. Influence of operational variables and electrolytes on brushite homogeneous crystallization. Journal of the Taiwan Institute of Chemical Engineers, 83, 124-132. doi:https://doi.org/10.1016/j.jtice.2017.12.009
Capdevielle, A., Sýkorová, E., Béline, F., & Daumer, M.-L. (2014). Kinetics of struvite precipitation in synthetic biologically treated swine wastewaters. Environmental Technology, 35(10), 1250-1262. doi:10.1080/09593330.2013.865790
Childers, D. L., Corman, J., Edwards, M., & Elser, J. J. (2011). Sustainability Challenges of Phosphorus and Food: Solutions from Closing the Human Phosphorus Cycle. BioScience, 61(2), 117-124. doi:10.1525/bio.2011.61.2.6
Ferguson, S., Morris, G., Hao, H., Barrett, M., & Glennon, B. (2014). Automated self seeding of batch crystallizations via plug flow seed generation. Chemical Engineering Research and Design, 92(11), 2534-2541. doi:https://doi.org/10.1016/j.cherd.2014.01.028
Fromberg, M., Pawlik, M., & Mavinic, D. S. (2020). Induction time and zeta potential study of nucleating and growing struvite crystals for phosphorus recovery improvements within fluidized bed reactors. Powder Technology, 360, 715-730. doi:https://doi.org/10.1016/j.powtec.2019.09.067
Gui, L., Yang, H., Huang, H., Hu, C., Feng, Y., & Wang, X. (2022). Liquid solid fluidized bed crystallization granulation technology: Development, applications, properties, and prospects. Journal of Water Process Engineering, 45, 102513. doi:https://doi.org/10.1016/j.jwpe.2021.102513
Huang, H., Liu, J., & Ding, L. (2015). Recovery of phosphate and ammonia nitrogen from the anaerobic digestion supernatant of activated sludge by chemical precipitation. Journal of Cleaner Production, 102, 437-446. doi:https://doi.org/10.1016/j.jclepro.2015.04.117
Jiang, S., Wang, J., Qiao, S., & Zhou, J. (2021). Phosphate recovery from aqueous solution through adsorption by magnesium modified multi-walled carbon nanotubes. Science of The Total Environment, 796, 148907. doi:https://doi.org/10.1016/j.scitotenv.2021.148907
Jones, A. G. (2002). Crystallization process systems. Oxford; Boston: Butterworth-Heinemann.
Krishnamoorthy, N., Arunachalam, T., & Paramasivan, B. (2021). A comparative study of phosphorus recovery as struvite from cow and human urine. Materials Today: Proceedings. doi:https://doi.org/10.1016/j.matpr.2021.04.587
Krishnamoorthy, N., Dey, B., Unpaprom, Y., Ramaraj, R., Maniam, G. P., Govindan, N., . . . Paramasivan, B. (2021). Engineering principles and process designs for phosphorus recovery as struvite: A comprehensive review. Journal of Environmental Chemical Engineering, 9(5), 105579. doi:https://doi.org/10.1016/j.jece.2021.105579
Kumari, S., Jose, S., Tyagi, M., & Jagadevan, S. (2020). A holistic and sustainable approach for recovery of phosphorus via struvite crystallization from synthetic distillery wastewater. Journal of Cleaner Production, 254, 120037. doi:https://doi.org/10.1016/j.jclepro.2020.120037
Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review. Critical Reviews in Environmental Science and Technology, 39(6), 433-477. doi:10.1080/10643380701640573
Le, V.-G., Vo, D.-V. N., Nguyen, N.-H., Shih, Y.-J., Vu, C.-T., Liao, C.-H., & Huang, Y.-H. (2021). Struvite recovery from swine wastewater using fluidized-bed homogeneous granulation process. Journal of Environmental Chemical Engineering, 9(3), 105019. doi:https://doi.org/10.1016/j.jece.2020.105019
Le, V.-G., Vu, C.-T., Shih, Y.-J., Bui, X.-T., Liao, C.-H., & Huang, Y.-H. (2020). Phosphorus and potassium recovery from human urine using a fluidized bed homogeneous crystallization (FBHC) process. Chemical Engineering Journal, 384, 123282. doi:https://doi.org/10.1016/j.cej.2019.123282
Lee, S.-H., Yoo, B.-H., Lim, S. J., Kim, T.-H., Kim, S.-K., & Kim, J. Y. (2013). Development and validation of an equilibrium model for struvite formation with calcium co-precipitation. Journal of Crystal Growth, 372, 129-137. doi:https://doi.org/10.1016/j.jcrysgro.2013.03.010
Leng, Y., & Soares, A. (2021). The mechanisms of struvite biomineralization in municipal wastewater. Science of The Total Environment, 799, 149261. doi:https://doi.org/10.1016/j.scitotenv.2021.149261
Li, B., Huang, H. M., Boiarkina, I., Yu, W., Huang, Y. F., Wang, G. Q., & Young, B. R. (2019). Phosphorus recovery through struvite crystallisation: Recent developments in the understanding of operational factors. Journal of Environmental Management, 248, 109254. doi:https://doi.org/10.1016/j.jenvman.2019.07.025
Liu, B., Giannis, A., Zhang, J., Chang, V. W. C., & Wang, J.-Y. (2013). Characterization of induced struvite formation from source-separated urine using seawater and brine as magnesium sources. Chemosphere, 93(11), 2738-2747. doi:https://doi.org/10.1016/j.chemosphere.2013.09.025
Liu, Y., Kumar, S., Kwag, J.-H., & Ra, C. (2013). Magnesium ammonium phosphate formation, recovery and its application as valuable resources: a review. Journal of Chemical Technology & Biotechnology, 88(2), 181-189. doi:https://doi.org/10.1002/jctb.3936
Liu, Y. C., & Nagy, Z. K. (2020). Continuous Crystallization: Equipment and Operation. In Z. K. Nagy, A. El Hagrasy, & J. Litster (Eds.), Continuous Pharmaceutical Processing (pp. 129-192). Cham: Springer International Publishing.
Mehta, C. M., & Batstone, D. J. (2013). Nucleation and growth kinetics of struvite crystallization. Water Research, 47(8), 2890-2900. doi:https://doi.org/10.1016/j.watres.2013.03.007
Ohlinger, K., Young, T., & Schroeder, E. J. J. o. E. E. (1999). Kinetics Effects on Preferential Struvite Accumulation in Wastewater. 125, 730-737.
Pahunang, R. R., Ballesteros, F. C., de Luna, M. D. G., Vilando, A. C., & Lu, M.-C. (2019). Optimum recovery of phosphate from simulated wastewater by unseeded fluidized-bed crystallization process. Separation and Purification Technology, 212, 783-790. doi:https://doi.org/10.1016/j.seppur.2018.11.087
Ping, Q., Li, Y., Wu, X., Yang, L., & Wang, L. (2016). Characterization of morphology and component of struvite pellets crystallized from sludge dewatering liquor: Effects of total suspended solid and phosphate concentrations. Journal of Hazardous Materials, 310, 261-269. doi:https://doi.org/10.1016/j.jhazmat.2016.02.047
Rahaman, M. S., Mavinic, D. S., Meikleham, A., & Ellis, N. (2014). Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor. Water Research, 51, 1-10. doi:https://doi.org/10.1016/j.watres.2013.11.048
Rahman, M. M., Salleh, M. A. M., Rashid, U., Ahsan, A., Hossain, M. M., & Ra, C. S. (2014). Production of slow release crystal fertilizer from wastewaters through struvite crystallization – A review. Arabian Journal of Chemistry, 7(1), 139-155. doi:https://doi.org/10.1016/j.arabjc.2013.10.007
Ronteltap, M., Maurer, M., & Gujer, W. (2007). Struvite precipitation thermodynamics in source-separated urine. Water Research, 41(5), 977-984. doi:https://doi.org/10.1016/j.watres.2006.11.046
Roy, R. N., Finck, A., Blair, G., Tandon, H. J. A. g. f. i. n. m. F. F., & Bulletin, P. N. (2006). Plant nutrition for food security. 16, 368.
Ruttenberg, K. C. (2019). Phosphorus Cycle. In J. K. Cochran, H. J. Bokuniewicz, & P. L. Yager (Eds.), Encyclopedia of Ocean Sciences (Third Edition) (pp. 447-460). Oxford: Academic Press.
Santiviago, C., Peralta, J., & López, I. (2022). Phosphorus removal from wastewater through struvite crystallization in a continuous fluidized-bed reactor: An improved comprehensive model. Chemical Engineering Journal, 430, 132903. doi:https://doi.org/10.1016/j.cej.2021.132903
Shaddel, S., Grini, T., Andreassen, J.-P., Østerhus, S. W., & Ucar, S. (2020). Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: towards enhancing sustainability and economics of struvite crystallization. Chemosphere, 256, 126968. doi:https://doi.org/10.1016/j.chemosphere.2020.126968
Shih, Y.-J., Abarca, R. R. M., de Luna, M. D. G., Huang, Y.-H., & Lu, M.-C. (2017). Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions. Chemosphere, 173, 466-473. doi:https://doi.org/10.1016/j.chemosphere.2017.01.088
Song, L., Li, Z., Wang, G., Tian, Y., & Yang, C. (2021). Supersaturation control of struvite growth by operating pH. Journal of Molecular Liquids, 336, 116293. doi:https://doi.org/10.1016/j.molliq.2021.116293
Song, Y.-H., Qiu, G.-L., Yuan, P., Cui, X.-Y., Peng, J.-F., Zeng, P., . . . Qian, F. (2011). Nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization without chemical additions. Journal of Hazardous Materials, 190(1), 140-149. doi:https://doi.org/10.1016/j.jhazmat.2011.03.015
Thant Zin, M. M., & Kim, D.-J. (2019). Struvite production from food processing wastewater and incinerated sewage sludge ash as an alternative N and P source: Optimization of multiple resources recovery by response surface methodology. Process Safety and Environmental Protection, 126, 242-249. doi:https://doi.org/10.1016/j.psep.2019.04.018
Volpin, F., Chekli, L., Phuntsho, S., Cho, J., Ghaffour, N., Vrouwenvelder, J. S., & Kyong Shon, H. (2018). Simultaneous phosphorous and nitrogen recovery from source-separated urine: A novel application for fertiliser drawn forward osmosis. Chemosphere, 203, 482-489. doi:https://doi.org/10.1016/j.chemosphere.2018.03.193
Wang, C. C., Hao, X. D., Guo, G. S., & van Loosdrecht, M. C. M. (2010). Formation of pure struvite at neutral pH by electrochemical deposition. Chemical Engineering Journal, 159(1), 280-283. doi:https://doi.org/10.1016/j.cej.2010.02.026
Wang, F., Wei, J., Zou, X., Fu, R., Li, J., Wu, D., . . . Chen, H. (2019). Enhanced electrochemical phosphate recovery from livestock wastewater by adjusting pH with plant ash. Journal of Environmental Management, 250, 109473. doi:https://doi.org/10.1016/j.jenvman.2019.109473
Wang, J., Ye, X., Zhang, Z., Ye, Z.-L., & Chen, S. (2018). Selection of cost-effective magnesium sources for fluidized struvite crystallization. Journal of Environmental Sciences, 70, 144-153. doi:https://doi.org/10.1016/j.jes.2017.11.029
Wang, Q., Li, J.-s., Tang, P., Fang, L., & Poon, C. S. (2018). Sustainable reclamation of phosphorus from incinerated sewage sludge ash as value-added struvite by chemical extraction, purification and crystallization. Journal of Cleaner Production, 181, 717-725. doi:https://doi.org/10.1016/j.jclepro.2018.01.254
Wang, Y., Mou, J., Liu, X., & Chang, J. (2021). Phosphorus recovery from wastewater by struvite in response to initial nutrients concentration and nitrogen/phosphorus molar ratio. Science of The Total Environment, 789, 147970. doi:https://doi.org/10.1016/j.scitotenv.2021.147970
Ye, X., Ye, Z.-L., Lou, Y., Pan, S., Wang, X., Wang, M. K., & Chen, S. (2016). A comprehensive understanding of saturation index and upflow velocity in a pilot-scale fluidized bed reactor for struvite recovery from swine wastewater. Powder Technology, 295, 16-26. doi:https://doi.org/10.1016/j.powtec.2016.03.022
Zhang, Z., Yao, H., Wu, B., Wang, B., & Chen, J. (2021). Limited capacity of suspended particulate matter in the Yangtze River Estuary and Hangzhou Bay to carry phosphorus into coastal seas. Estuarine, Coastal and Shelf Science, 258, 107417. doi:https://doi.org/10.1016/j.ecss.2021.107417
Zin, M. M. T., Tiwari, D., & Kim, D.-J. (2020). Maximizing ammonium and phosphate recovery from food wastewater and incinerated sewage sludge ash by optimal Mg dose with RSM. Journal of Industrial and Engineering Chemistry, 86, 136-143. doi:https://doi.org/10.1016/j.jiec.2020.02.020
吳孟修. (2012). 以流體化床結晶技術處理半導體產業含氟廢水之案例探討. (碩士), 朝陽科技大學, 台中市. Retrieved from https://hdl.handle.net/11296/3c9d94
吳峻豪. (2013). 流體化床磷酸銨鎂結晶回收污水處理廠磷之研究. (碩士), 朝陽科技大學, 台中市. Retrieved from https://hdl.handle.net/11296/jy4r54
李茂松. (1993). 流體化床結晶技術在無機廢水處理上應用性研究. (碩士), 中原大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/hw5nfb
林, 李. (2013). 突破品質水準 : 實驗設計與田口方法之實務應用 (初版. ed.). 新北市: 全華圖書.
林惠玲, & 陳正倉. (2009). 統計學 : 方法與應用 (4版 ed.). 臺北市: 雙葉書廊.
洪再生. (1996). 流體化床結晶技術回收廢水中重金屬銅之探討. (碩士), 國立中央大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/v72hm5
陳政澤. (1995). 流體化床結晶反應槽回收廢水中重金屬鎘之研究. (碩士), 國立中央大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/ju237f
黃婷鈺. (2021). 以反應曲面法探討流體化床結晶回收磷酸亞鐵之影響因子. (碩士), 國立中央大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/84hx8e
葉怡成. (2001). 實驗計劃法 : 製程與產品最佳化 (初版 ed.). 臺北市: 五南.
劉志忠. (1998). 流體化床結晶法去除水中磷酸鹽之研究. (碩士), 國立中央大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/e56azw |