博碩士論文 109326013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.86.235.207
姓名 張哲維(Che-Wei Chang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 硫氮比、pH與溶氧對還原性硫化物自營脫硝反應之影響
(Effect of environmental conditions on reduced sulfur-based autotrophic denitrification)
相關論文
★ 以SDI與MFI指標評估工業廢水回收再利用之機會:以某散熱器製造業為例★ 以反應曲面法探討流體化床結晶回收磷酸亞鐵之影響因子
★ 活性污泥異營與自營脫硝 反應動力特性之研究★ 沼渣施用對土壤及滲出水之重金屬成份影響分析
★ 脈衝式曝氣對沉浸式薄膜生物處理系統 積垢控制之探討★ 以聚合硫酸鐵進行污泥調理脫水之綜合效能評估
★ 以低亞硫酸鈉進行自營性脫硝反應之可行性研究★ 污泥脫水濾液無機物成分之結垢潛勢研究
★ 以海水提升流體化床磷酸銨鎂結晶 之可行性研究★ 超音波水解生物污泥機制探討
★ 生物除氮程序(MLE Process)效能評估及污泥活性探討★ 活性污泥除氮程序(OAO Process)效能評估與設計參數探討
★ 廢水處理廠 COD 和 TN 水質細分類 與脫硝效率之研究★ 硫代硫酸鹽自營性脫硝之反應動力與亞硝酸鹽氮累積特性探討
★ 以RO濃排水提升流體化床磷酸鹽結晶之可行性研究★ 以超聲波輔助化學氧化法處理廢棄 NF 膜之反應特性與膜再利用可行性評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-9-30以後開放)
摘要(中) 由於水中的含氮污染物是目前最受到關切的污染物之一,其過度排放皆會對環境造成污染甚至對人體造成危害,加上我國政府對於環保法規的重視,對污水處理廠排放標準採用更高標準之放流水水質管制。由於在污水處理廠中大多以異營性微生物進行脫硝作用,但在處理無機廢水則需要添加額外有機碳源才能有較好的脫硝效果,因此發展出可直接利用無機性電子供體之自營性微生物以進行脫硝反應,其優點包含不需要添加額外機有機物和產生污泥量較低。
本研究以硫代硫酸鹽作為自營性脫硝系統之無機性電子供體,並探討此活性污泥最合適之 S/N 比,以及對自營性脫硝進行不同 pH 值與溶氧濃度之影響比較。結果顯示當 S/N 比 = 2.19 時,自營脫硝微生物有足夠之電子供體可進行完全脫硝反應,並且不會有中間產物累積;但當 S/N 比 = 1.88 時,則脫硝微生物則會優先還原硝酸鹽氮,造成亞硝酸鹽氮累積現象產生。在本研究中所培養之自營脫硝污泥,其組成以 Sulfurimonas 與 Thiobacillus 這兩株硫脫硝菌群為主並占了整體一半以上。
在 pH 對自營性脫硝影響方面可得知在 pH = 7 時,脫硝速率達到最大值,並且在 pH = 6 ~ 8 之間都具有將硝酸鹽氮完全去除且不會有中間產物累積,此時的比脫硝速率平均為 7.69 mg NO3--N/g VSS*hr;而當 pH < 6 或是 > 8 時,則脫硝效率則會受到限制,在 pH = 5 與 9 時比脫硝速率分別為 1.66 及 4.12 mg NO3--N/g VSS*hr,並且硝酸鹽氮大部分僅還原成亞硝酸鹽氮並累積。
在溶氧濃度影響上,當系統處於缺氧狀態(DO = 0 mg/L)時,其脫硝速率達最佳狀態並可完全脫硝;在微好氧(DO = 1 mg/L)條件下,儘管硝酸鹽氮在反應結束時完全被還原,但大部分都以亞硝酸鹽氮累積在水體中;在好氧(DO = 3 mg/L)條件下脫硝作用則受到嚴重抑制現象。

關鍵字:自營性脫硝、還原性硫化物、S/N 比、pH、溶氧
摘要(英) Since nitrogen pollutants in water are one of the most concerned pollutants at present, their excessive discharge will cause pollution to the environment and even harm the human. In addition, the government attaches great importance to environmental protection regulations, discharge standards use higher standards for discharge water quality control. Since the heterotrophic denitrification bacteria are mostly used for denitrification in wastewater treatment plant, but need to add additional organic carbon source to have better denitrification effect when treating inorganic wastewater. Therefore, autotrophic denitrification bacteria have been developed for denitrification, which have advantages such as no need to add additional organic matter and lower sludge production.
In this study, thiosulfate was used as the inorganic electron donor in the sulfur autotrophic denitrification (SADN) system, and find the most suitable S/N ratio, also compare the effects of different pH values and dissolved oxygen concentrations in SADN. The results shown that when the S/N ratio = 2.19, the autotrophic denitrification sludge have enough electron donors to do the denitrification reaction, and there will be no accumulation of intermediate products; when the S/N ratio = 1.88, the nitrate in autotrophic denitrification will be preferentially reduced, lead to the nitrite will be accumulation. In addition, the autotrophic denitrification sludge domesticated in this study was mainly composed of Sulfurimonas and Thiobacillus, which accounted for more than half of the total.
The effect of pH in autotrophic denitrification reveal that denitrification rate reaches maximum at pH = 7, and between pH = 6 ~ 8, nitrate can be completely removed without intermediate product accumulation, and the average specific denitrification rate (SDNR) at this time is 7.69 mg NO3--N/g VSS*hr; when pH < 6 or > 8, the denitrification efficiency restricted, the specific denitrification rates were 1.66 and 4.12 mg NO3--N/g VSS*hr at pH = 5 and 9, respectively. Moreover, most of the nitrate was reduced to nitrite and accumulated.
The effect of dissolved oxygen concentration, shown that when the system is in anoxic stage (DO = 0 mg/L), the denitrification rate reaches the best performance and can completely denitrify. Under microaerobic conditions (DO = 1 mg/L), although nitrate is completely reduced at the end of the reaction, most of it is accumulated to nitrite. However, denitrification was severely inhibited under aerobic conditions (DO = 3 mg/L).

Keyword: autotrophic denitrification, reduced inorganic sulfur compounds, S/N ratio, pH, dissolved oxygen
關鍵字(中) ★ 自營性脫硝
★ 還原性硫化物
★ 硫氮比
★ pH
★ 溶氧
關鍵字(英) ★ autotrophic denitrification
★ reduced inorganic sulfur compounds
★ S/N ratio
★ pH
★ dissolved oxygen
論文目次 摘要 i
圖摘要 ii
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xi
第一章 前言 1
1.1 研究緣起 1
1.2 研究內容與目的 3
第二章 文獻回顧 4
2.1 氮循環 4
2.2 脫硝作用 5
2.2.1以還原性硫化物進行自營性脫硝 6
2.2.2以氫氣進行自營性脫硝 11
2.2.3自營性脫硝作用比較 12
2.3 自營性脫硝關鍵操作參數 17
2.3.1 pH 與 ORP 之影響 17
2.3.2溶氧之影響 21
2.3.3溫度之影響 23
2.3.4 S/N 比之影響 24
2.3.5微生物菌群之影響 26
第三章 研究方法 29
3.1 研究流程設計與架構 29
3.2 研究流程與步驟 31
3.2.1自營性脫硝污泥培養 31
3.2.2自營性脫硝批次試驗 38
3.3 實驗材料、設備與分析方法 40
3.3.1實驗設備 40
3.3.2實驗材料與藥品 44
3.3.3樣品保存及分析方法 45
第四章 結果與討論 46
4.1 自營性脫硝污泥長期實驗成果 46
4.1.1長期實驗成果 46
4.1.2各階段水質變化 53
4.1.3自營脫硝之含氮物質濃度變化情形 63
4.1.4脫硝速率比較 76
4.1.5菌群分佈 78
4.2 pH 值對自營脫硝污泥之影響 83
4.2.1 pH 及 ORP 變化 83
4.2.2含氮物質變化 87
4.3 DO 濃度對自營脫硝污泥之影響 93
4.3.1 pH 及 ORP 變化 93
4.3.2含氮物質變化 96
第五章 結論與建議 102
5.1 結論 102
5.2 建議 104
參考文獻 105
參考文獻 Campos, J., Carvalho, S., Portela, R., Mosquera-Corral, A. and Méndez, R. 2008. Kinetics of denitrification using sulphur compounds: effects of S/N ratio, endogenous and exogenous compounds. Bioresource technology 99(5), 1293-1299.
Cardoso, R.B., Sierra‐Alvarez, R., Rowlette, P., Flores, E.R., Gómez, J. and Field, J.A. 2006. Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnology and bioengineering 95(6), 1148-1157.
Chang, C.-N., Cheng, H.-B. and Chao, A.C. 2004. Applying the Nernst equation to simulate redox potential variations for biological nitrification and denitrification processes. Environmental science & technology 38(6), 1807-1812.
Chen, C., Ren, N., Wang, A., Liu, L. and Lee, D.-J. 2010. Enhanced performance of denitrifying sulfide removal process under micro-aerobic condition. Journal of Hazardous Materials 179(1-3), 1147-1151.
Chen, D., Wang, H., Yang, K. and Ma, F. 2018a. Performance and microbial communities in a combined bioelectrochemical and sulfur autotrophic denitrification system at low temperature. Chemosphere 193, 337-342.
Chen, D., Yang, K. and Wang, H. 2016. Effects of important factors on hydrogen-based autotrophic denitrification in a bioreactor. Desalination and Water Treatment 57(8), 3482-3488.
Chen, F., Li, X., Gu, C., Huang, Y. and Yuan, Y. 2018b. Selectivity control of nitrite and nitrate with the reaction of S(0) and achieved nitrite accumulation in the sulfur autotrophic denitrification process. Bioresour Technol 266, 211-219.
Cherchi, C., Onnis‐Hayden, A., El‐Shawabkeh, I. and Gu, A.Z. 2009. Implication of using different carbon sources for denitrification in wastewater treatments. Water Environment Research 81(8), 788-799.
Claus, G. and Kutzner, H.J. 1985. Physiology and kinetics of autotrophic denitrification by Thiobacillus denitrificans. Applied Microbiology and Biotechnology 22(4), 283-288.
Cui, Y.-X., Biswal, B.K., Guo, G., Deng, Y.-F., Huang, H., Chen, G.-H. and Wu, D. 2019a. Biological nitrogen removal from wastewater using sulphur-driven autotrophic denitrification. Applied microbiology and biotechnology 103(15), 6023-6039.
Cui, Y.-X., Biswal, B.K., van Loosdrecht, M.C., Chen, G.-H. and Wu, D. 2019b. Long term performance and dynamics of microbial biofilm communities performing sulfur-oxidizing autotrophic denitrification in a moving-bed biofilm reactor. Water Research 166, 115038.
Cui, Y.-X., Guo, G., Ekama, G.A., Deng, Y.-F., Chui, H.-K., Chen, G.-H. and Wu, D. 2019c. Elucidating the biofilm properties and biokinetics of a sulfur-oxidizing moving-bed biofilm for mainstream nitrogen removal. Water research 162, 246-257.
Di Capua, F., Ahoranta, S.H., Papirio, S., Lens, P.N. and Esposito, G. 2016. Impacts of sulfur source and temperature on sulfur-driven denitrification by pure and mixed cultures of Thiobacillus. Process Biochemistry 51(10), 1576-1584.
Di Capua, F., Milone, I., Lakaniemi, A.-M., Lens, P.N. and Esposito, G. 2017. High-rate autotrophic denitrification in a fluidized-bed reactor at psychrophilic temperatures. Chemical Engineering Journal 313, 591-598.
Di Capua, F., Pirozzi, F., Lens, P.N. and Esposito, G. 2019. Electron donors for autotrophic denitrification. Chemical Engineering Journal 362, 922-937.
Dolejs, P., Paclík, L., Maca, J., Pokorna, D., Zabranska, J. and Bartacek, J. 2015. Effect of S/N ratio on sulfide removal by autotrophic denitrification. Applied microbiology and biotechnology 99(5), 2383-2392.
dos Santos, C.E.D., de Bello Solcia Guerrero, R., de Godoi, L.A.G., Foresti, E. and Damianovic, M.H.R.Z. 2018. Dynamics of the nitrification and sulfide‐driven autotrophic denitrification processes in a single reactor using oxidation–reduction potential as an indicator of the process effectiveness. Journal of Chemical Technology & Biotechnology 93(12), 3483-3491.
Drtil, M., Nemeth, P., Buday, J., Bodik, I. and Hutňan, M. 1999. Regulation of denitrification using continually measured ORP and pH signal. System 3, 22.20.
Fajardo, C., Mora, M., Fernández, I., Mosquera-Corral, A., Campos, J.L. and Méndez, R. 2014. Cross effect of temperature, pH and free ammonia on autotrophic denitrification process with sulphide as electron donor. Chemosphere 97, 10-15.
Fan, C., Zhou, W., He, S. and Huang, J. 2021. Sulfur transformation in sulfur autotrophic denitrification using thiosulfate as electron donor. Environmental Pollution 268, 115708.
Frigaard, N.-U. and Dahl, C. 2008. Sulfur metabolism in phototrophic sulfur bacteria. Advances in microbial physiology 54, 103-200.
Fu, C., Li, J., Lv, X., Song, W. and Zhang, X. 2020. Operation performance and microbial community of sulfur-based autotrophic denitrification sludge with different sulfur sources. Environ Geochem Health 42(3), 1009-1020.
Ge, S., Peng, Y., Wang, S., Lu, C., Cao, X. and Zhu, Y. 2012. Nitrite accumulation under constant temperature in anoxic denitrification process: The effects of carbon sources and COD/NO3-N. Bioresource technology 114, 137-143.
Gerardi, M.H. (2003) Nitrification and denitrification in the activated sludge process, John Wiley & Sons.
Hao, W., Zhang, J., Duan, R., Liang, P., Li, M., Qi, X., Li, Q., Liu, P. and Huang, X. 2020. Organic carbon coupling with sulfur reducer boosts sulfur based denitrification by Thiobacillus denitrificans. Science of The Total Environment 748, 142445.
Hu, B.-l., Zheng, P., Tang, C.-j., Chen, J.-w., van der Biezen, E., Zhang, L., Ni, B.-j., Jetten, M.S., Yan, J. and Yu, H.-Q. 2010. Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water research 44(17), 5014-5020.
Huang, S., Zheng, Z., Wei, Q., Han, I. and Jaffe, P.R. 2019. Performance of sulfur-based autotrophic denitrification and denitrifiers for wastewater treatment under acidic conditions. Bioresour Technol 294, 122176.
Koenig, A. and Liu, L. 2001. Kinetic model of autotrophic denitrification in sulphur packed-bed reactors. Water Research 35(8), 1969-1978.
Koenig, A. and Liu, L. 2004. Autotrophic denitrification of high–salinity wastewater using elemental sulfur: batch tests. Water Environment Research 76(1), 37-46.
Koenig, A., Zhang, T., Liu, L.-H. and Fang, H.H. 2005. Microbial community and biochemistry process in autosulfurotrophic denitrifying biofilm. Chemosphere 58(8), 1041-1047.
Kong, Z., Li, L., Feng, C., Dong, S. and Chen, N. 2016. Comparative investigation on integrated vertical-flow biofilters applying sulfur-based and pyrite-based autotrophic denitrification for domestic wastewater treatment. Bioresour Technol 211, 125-135.
Kostrytsia, A., Papirio, S., Morrison, L., Ijaz, U.Z., Collins, G., Lens, P.N. and Esposito, G. 2018. Biokinetics of microbial consortia using biogenic sulfur as a novel electron donor for sustainable denitrification. Bioresource technology 270, 359-367.
Kumar, S., Herrmann, M., Blohm, A., Hilke, I., Frosch, T., Trumbore, S.E. and Küsel, K. 2018. Thiosulfate-and hydrogen-driven autotrophic denitrification by a microbial consortium enriched from groundwater of an oligotrophic limestone aquifer. FEMS microbiology ecology 94(10), fiy141.
Li, Y., Wang, Y., Wan, D., Li, B., Zhang, P. and Wang, H. 2020. Pilot-scale application of sulfur-limestone autotrophic denitrification biofilter for municipal tailwater treatment: Performance and microbial community structure. Bioresource technology 300, 122682.
Liu, C., Li, W., Li, X., Zhao, D., Ma, B., Wang, Y., Liu, F. and Lee, D.-J. 2017. Nitrite accumulation in continuous-flow partial autotrophic denitrification reactor using sulfide as electron donor. Bioresource Technology 243, 1237-1240.
Liu, C., Zhao, D., Yan, L., Wang, A., Gu, Y. and Lee, D.-J. 2015. Elemental sulfur formation and nitrogen removal from wastewaters by autotrophic denitrifiers and anammox bacteria. Bioresource Technology 191, 332-336.
Lu, H., Huang, H., Yang, W., Mackey, H.R., Khanal, S.K., Wu, D. and Chen, G.-H. 2018a. Elucidating the stimulatory and inhibitory effects of dissolved sulfide on sulfur-oxidizing bacteria (SOB) driven autotrophic denitrification. Water research 133, 165-172.
Lu, J.s., Lian, T.t. and Su, J.f. 2018b. Effect of zero-valent iron on biological denitrification in the autotrophic denitrification system. Research on Chemical Intermediates 44, 6011-6022.
Manconi, I., Carucci, A. and Lens, P. 2007. Combined removal of sulfur compounds and nitrate by autotrophic denitrification in bioaugmented activated sludge system. Biotechnology and bioengineering 98(3), 551-560.
Mora, M., Dorado, A.D., Gamisans, X. and Gabriel, D. 2015. Investigating the kinetics of autotrophic denitrification with thiosulfate: Modeling the denitritation mechanisms and the effect of the acclimation of SO-NR cultures to nitrite. Chemical Engineering Journal 262, 235-241.
Moraes, B., Souza, T. and Foresti, E. 2011. Characterization and kinetics of sulfide-oxidizing autotrophic denitrification in batch reactors containing suspended and immobilized cells. Water Science and Technology 64(3), 731-738.
Moraes, B.d.S., Souza, T. and Foresti, E. 2012. Effect of sulfide concentration on autotrophic denitrification from nitrate and nitrite in vertical fixed-bed reactors. Process Biochemistry 47(9), 1395-1401.
Oberoi, A.S., Huang, H., Khanal, S.K., Sun, L. and Lu, H. 2021. Electron distribution in sulfur-driven autotrophic denitrification under different electron donor and acceptor feeding schemes. Chemical Engineering Journal 404, 126486.
Oh, J. and Silverstein, J. 1999. Oxygen inhibition of activated sludge denitrification. Water research 33(8), 1925-1937.
Oh, S.-E., Kim, K.-S., Choi, H.-C., Cho, J. and Kim, I. 2000. Kinetics and physiological characteristics of autotrophic dentrification by denitrifying sulfur bacteria. Water science and technology 42(3-4), 59-68.
Qian, J., Jiang, F., Chui, H.K., van Loosdrecht, M.C. and Chen, G. 2013. Industrial flue gas desulfurization waste may offer an opportunity to facilitate SANI® application for significant sludge minimization in freshwater wastewater treatment. Water science and technology 67(12), 2822-2826.
Qian, J., Lu, H., Cui, Y., Wei, L., Liu, R. and Chen, G.H. 2015. Investigation on thiosulfate-involved organics and nitrogen removal by a sulfur cycle-based biological wastewater treatment process. Water Res 69, 295-306.
Read-Daily, B., Tank, J. and Nerenberg, R. 2011. Stimulating denitrification in a stream mesocosm with elemental sulfur as an electron donor. Ecological Engineering 37(4), 580-588.
Rezania, B., Cicek, N. and Oleszkiewicz, J. 2005. Kinetics of hydrogen‐dependent denitrification under varying pH and temperature conditions. Biotechnology and bioengineering 92(7), 900-906.
Rittmann, B.E. and McCarty, P.L. (2001) Environmental biotechnology: principles and applications, McGraw-Hill Education.
Sahinkaya, E., Dursun, N., Kilic, A., Demirel, S., Uyanik, S. and Cinar, O. 2011. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: control of sulfate production. Water research 45(20), 6661-6667.
Sahinkaya, E., Kilic, A. and Duygulu, B. 2014. Pilot and full scale applications of sulfur-based autotrophic denitrification process for nitrate removal from activated sludge process effluent. water research 60, 210-217.
Saleh-Lakha, S., Shannon, K.E., Henderson, S.L., Goyer, C., Trevors, J.T., Zebarth, B.J. and Burton, D.L. 2009. Effect of pH and temperature on denitrification gene expression and activity in Pseudomonas mandelii. Applied and environmental microbiology 75(12), 3903-3911.
Seitzinger, S., Harrison, J.A., Böhlke, J., Bouwman, A., Lowrance, R., Peterson, B., Tobias, C. and Drecht, G.V. 2006. Denitrification across landscapes and waterscapes: a synthesis. Ecological applications 16(6), 2064-2090.
Shao, M.-F., Zhang, T. and Fang, H.H.-P. 2010. Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Applied microbiology and biotechnology 88(5), 1027-1042.
Shao, M.-F., Zhang, T., Fang, H.H.-P. and Li, X. 2011. The effect of nitrate concentration on sulfide-driven autotrophic denitrification in marine sediment. Chemosphere 83(1), 1-6.
Shen, J., He, R., Han, W., Sun, X., Li, J. and Wang, L. 2009. Biological denitrification of high-nitrate wastewater in a modified anoxic/oxic-membrane bioreactor (A/O-MBR). Journal of Hazardous Materials 172(2-3), 595-600.
Sierra-Alvarez, R., Beristain-Cardoso, R., Salazar, M., Gómez, J., Razo-Flores, E. and Field, J.A. 2007. Chemolithotrophic denitrification with elemental sulfur for groundwater treatment. Water research 41(6), 1253-1262.
Strohm, T.O., Griffin, B., Zumft, W.G. and Schink, B. 2007. Growth yields in bacterial denitrification and nitrate ammonification. Applied and environmental microbiology 73(5), 1420-1424.
Tian, T. and Yu, H.-Q. 2020. Denitrification with non-organic electron donor for treating low C/N ratio wastewaters. Bioresource Technology 299, 122686.
Tong, S., Rodriguez-Gonzalez, L.C., Payne, K.A., Stocks, J.L., Feng, C. and Ergas, S.J. 2018. Effect of Pyrite Pretreatment, Particle Size, Dose, and Biomass Concentration on Particulate Pyrite Autotrophic Denitrification of Nitrified Domestic Wastewater. Environmental Engineering Science 35(8), 875-886.
Vidal, S., Rocha, C. and Galvao, H. 2002. A comparison of organic and inorganic carbon controls over biological denitrification in aquaria. Chemosphere 48(4), 445-451.
Vishniac, W. and Santer, M. 1957. The thiobacilli. Bacteriological reviews 21(3), 195-213.
Wang, J.-J., Huang, B.-C., Li, J. and Jin, R.-C. 2020a. Advances and challenges of sulfur-driven autotrophic denitrification (SDAD) for nitrogen removal. Chinese Chemical Letters 31(10), 2567-2574.
Wang, T., Guo, J., Lu, C., Li, H., Han, Y., Song, Y., Hou, Y. and Zhang, J. 2020b. Faster removal of nitrite than nitrate in sulfur-based autotrophic denitrification coupled with anammox, affected by the anammox effluent. Environmental Science: Water Research & Technology 6(4), 916-924.
Wang, X., Zhang, Y., Zhang, T. and Zhou, J. 2016. Effect of dissolved oxygen on elemental sulfur generation in sulfide and nitrate removal process: characterization, pathway, and microbial community analysis. Applied microbiology and biotechnology 100(6), 2895-2905.
Wu, C., Qin, Y., Yang, L., Liu, Z., Chen, B. and Chen, L. 2020. Effects of loading rates and N/S ratios in the sulfide-dependent autotrophic denitrification (SDAD) and Anammox coupling system. Bioresour Technol 316, 123969.
Xu, X.-j., Chen, C., Wang, A.-j., Fang, N., Yuan, Y., Ren, N.-q. and Lee, D.-J. 2012. Enhanced elementary sulfur recovery in integrated sulfate-reducing, sulfur-producing rector under micro-aerobic condition. Bioresource technology 116, 517-521.
Xu, Z., Dai, X. and Chai, X. 2018. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes. Science of the Total Environment 634, 195-204.
Yang, W., Zhao, Q., Lu, H., Ding, Z., Meng, L. and Chen, G.-H. 2016. Sulfide-driven autotrophic denitrification significantly reduces N2O emissions. Water research 90, 176-184.
Yang, Y., Gerrity, S., Collins, G., Chen, T., Li, R., Xie, S. and Zhan, X. 2018. Enrichment and characterization of autotrophic Thiobacillus denitrifiers from anaerobic sludge for nitrate removal. Process Biochemistry 68, 165-170.
Yu, H., Chen, C., Ma, J., Xu, X., Fan, R. and Wang, A. 2014. Microbial community functional structure in response to micro-aerobic conditions in sulfate-reducing sulfur-producing bioreactor. Journal of Environmental Sciences 26(5), 1099-1107.
Zeng, H. and Zhang, T.C. 2005. Evaluation of kinetic parameters of a sulfur–limestone autotrophic denitrification biofilm process. Water Research 39(20), 4941-4952.
Zhang, R.C., Xu, X.J., Chen, C., Shao, B., Zhou, X., Yuan, Y., Lee, D.J. and Ren, N.Q. 2019. Bioreactor performance and microbial community analysis of autotrophic denitrification under micro-aerobic condition. Sci Total Environ 647, 914-922.
Zhang, X., Wang, X., Feng, W., Li, X. and Lu, H. 2020. Investigating COD and Nitrate–Nitrogen Flow and Distribution Variations in the MUCT Process Using ORP as a Control Parameter. ACS omega 5(9), 4576-4587.
Zou, G., Papirio, S., Lakaniemi, A., Ahoranta, S. and Puhakka, J. 2016. High rate autotrophic denitrification in fluidized-bed biofilm reactors. Chemical Engineering Journal 284, 1287-1294.
內政部營建署下水道工程處(2020)。中華民國 109 年度污水下水道統計要覽。
行政院環境保護署(2021)。放流水標準。
歐陽嶠暉(2016)。下水道學,台灣水再生協會。
王公辰(2021)。活性污泥異營與自營脫硝反應動力特性之研究,(碩士),國立中央大學,桃園市。
指導教授 莊順興(Shun-Hsing Chuang) 審核日期 2022-9-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明