參考文獻 |
An, J., Shang, K., Lu, N., Hong, Y., Jiang, Y., Li, J., & Wu, Y. (2014). Performance of dielectric barrier discharge reactors on elemental mercury oxidation in the coal-fired flue gas. Plasma Science and Technology, 16(2), 155.
Anaghizi, S. J., Talebizadeh, P., Rahimzadeh, H., & Ghomi, H. (2015). The configuration effects of electrode on the performance of dielectric barrier discharge reactor for NOx removal. IEEE transactions on plasma science, 43(6), 1944-1953.
Boningari, T., Ettireddy, P. R., Somogyvari, A., Liu, Y., Vorontsov, A., McDonald, C. A., & Smirniotis, P. G. (2015). Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NO under oxygen-rich conditions. Journal of Catalysis, 325, 145-155.
Brogren, C., Karlsson, H. T., & Bjerle, I. (1997). Absorption of NO in an alkaline solution of KMnO4. Chemical Engineering & Technology, 20(6), 396-402.
Byun, Y., Koh, D. J., Shin, D. N., Cho, M., & Namkung, W. (2011). Polarity effect of pulsed corona discharge for the oxidation of gaseous elemental mercury. Chemosphere, 84(9), 1285-1289.
Chang, M. B., Kushner, M. J., & Rood, M. J. (1992). Removal of SO2 and the simultaneous removal of SO2 and NO from simulated flue-gas streams using dielectric barrier discharge plasmas. Plasma Chemistry and Plasma Processing, 12(4), 565-580.
Chen, H. L., Lee, H. M., & Chang, M. B. (2006). Enhancement of energy yield for ozone production via packed-bed reactors. Ozone: Science & Engineering, 28(2), 111-118.
Chen, H. L., Lee, H. M., Chen, S. H., & Chang, M. B. (2008). Review of packed-bed plasma reactor for ozone generation and air pollution control. Industrial & Engineering Chemistry Research, 47(7), 2122-2130.
Chen, H. L., Lee, H. M., Chen, S. H., Chang, M. B., Yu, S. J., & Li, S. N. (2009). Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: A review of the performance enhancement mechanisms, current status, and suitable applications. Environ Sci Technol, 43(7), 2216-2227.
Chen, R., Zhang, T., Guo, Y., Wang, J., Wei, J., & Yu, Q. (2021). Recent advances in simultaneous removal of SO2 and NOx from exhaust gases: Removal process, mechanism and kinetics. Chemical Engineering Journal, 420.
Chen, S., Wang, T., Wang, H., & Wu, Z. (2019). Insights into the reaction pathways and mechanism of NO removal by SDBD plasma via FTIR measurements. Fuel Processing Technology, 186, 125-136.
Cui, S., Zhong, Z., Liao, Y., Qi, L., & Fu, D. (2019). Simultaneous removal of NO and SO2 via an integrated system of nonthermal plasma combined with catalytic oxidation and wet electrostatic precipitator. Energy & Fuels, 33(10), 10078-10089.
Dinh, M. N., Giraudon, J. M., Vandenbroucke, A. M., Morent, R., De Geyter, N., & Lamonier, J. F. (2015). Post plasma-catalysis for total oxidation of trichloroethylene over Ce–Mn based oxides synthesized by a modified “redox-precipitation route”. Applied Catalysis B: Environmental, 172, 65-72.
Guo, R. T., Hao, J. K., Pan, W. G., & Yu, Y. L. (2015). Liquid phase oxidation and absorption of NO from flue gas: A review. Separation Science and Technology, 50(2), 310-321.
Huang, W. D., Ren, T. T., & Xia, W. D. (2007). Ozone generation by hybrid discharge combined with catalysis. Ozone-Science & Engineering, 29(2), 107-112.
Jõgi, I., Levoll, E., & Raud, J. (2016a). Plasma oxidation of NO in O2 N2 mixtures: The importance of back reaction. Chemical Engineering Journal, 301, 149-157.
Jõgi, I., Erme, K., Raud, J., & Laan, M. (2016b). Oxidation of NO by ozone in the presence of TiO2 catalyst. Fuel, 173, 45-51.
Jõgi, I., Erme, K., Levoll, E., Raud, J., & Stamate, E. (2018). Plasma and catalyst for the oxidation of NOx. Plasma Sources Science and Technology, 27(3).
Ji, R., Wang, J., Xu, W., Liu, X., Zhu, T., Yan, C., & Song, J. (2018). Study on the key factors of NO oxidation using O3: The oxidation product composition and oxidation selectivity. Industrial & Engineering Chemistry Research, 57(43), 14440-14447.
Jia, J., Zhang, P., & Chen, L. (2016). Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Applied Catalysis B: Environmental, 189, 210-218.
Kawamura, K., Hirasawa, A., Aoki, S., Kimura, H., Fujii, T., Mizutani, S., Higo, T., Ishikawa, R., Adachi, K., & Hosoki, S. (1979). Pilot plant experiment of NOx and SO2 removal from exhaust gases by electron beam irradiation. Radiation Physics and Chemistry (1977), 13(1), 5-12.
Kim, H. H., Prieto, G., Takashima, K., Katsura, S., & Mizuno, A. (2002). Performance evaluation of discharge plasma process for gaseous pollutant removal. Journal of Electrostatics, 55(1), 25-41.
Kim, H. H., Wu, C. X., Kinoshita, Y., Takashima, K., Katsura, S., & Mizuno, A. (2001). The influence of reaction conditions on SO2 oxidation in a discharge plasma reactor. IEEE Transactions on Industry Applications, 37(2), 480-487.
Kim, J. W., Lee, W. G., Hwang, I. S., Lee, J. Y., & Han, C. (2015). Recovery of tungsten from spent selective catalytic reduction catalysts by pressure leaching. Journal of Industrial and Engineering Chemistry, 28, 73-77.
Ko, J. H., Park, S. H., Jeon, J. K., Kim, S. S., Kim, S. C., Kim, J. M., Chang, D., & Park, Y. K. (2012). Low temperature selective catalytic reduction of NO with NH3 over Mn supported on Ce0.65Zr0.35O2 prepared by supercritical method: Effect of Mn precursors on NO reduction. Catalysis Today, 185(1), 290-295.
Li, X., Zhang, S., Jia, Y., Liu, X., & Zhong, Q. (2012). Selective catalytic oxidation of NO with O2 over Ce-doped MnOx/TiO2 catalysts. Journal of Natural Gas Chemistry, 21(1), 17-24.
Lin, F., Wang, Z., Ma, Q., He, Y., Whiddon, R., Zhu, Y., & Liu, J. (2016a). N2O5 formation mechanism during the ozone-based low-temperature oxidation deNOx process. Energy & Fuels, 30(6), 5101-5107.
Lin, F., Wang, Z., Ma, Q., Yang, Y., Whiddon, R., Zhu, Y., & Cen, K. (2016b). Catalytic deep oxidation of NO by ozone over MnOx loaded spherical alumina catalyst. Applied Catalysis B: Environmental, 198, 100-111.
Lin, F., Wang, Z., Shao, J., Yuan, D., He, Y., Zhu, Y., & Cen, K. (2017). Promotional effect of spherical alumina loading with manganese-based bimetallic oxides on nitric-oxide deep oxidation by ozone. Chinese Journal of Catalysis, 38(7), 1270-1280.
Lin, F., Wang, Z., Zhang, Z., He, Y., Zhu, Y., Shao, J., Yuan, D., Chen, G., & Cen, K. (2020). Flue gas treatment with ozone oxidation: An overview on NO, organic pollutants, and mercury. Chemical Engineering Journal, 382.
Lin, H., Gao, X., Luo, Z., Cen, K., Pei, M., & Huang, Z. (2004). Removal of NOx from wet flue gas by corona discharge. Fuel, 83(9), 1251-1255.
Loiland, J. A., & Lobo, R. F. (2014). Low temperature catalytic NO oxidation over microporous materials. Journal of Catalysis, 311, 412-423.
Ma, J., Wang, C., & He, H. (2017a). Transition metal doped cryptomelane-type manganese oxide catalysts for ozone decomposition. Applied Catalysis B: Environmental, 201, 503-510.
Ma, S. M., Zhao, Y. C., Yang, J. P., Zhang, S. B., Zhang, J. Y., & Zheng, C. G. (2017b). Research progress of pollutants removal from coal-fired flue gas using non-thermal plasma. Renewable & Sustainable Energy Reviews, 67, 791-810.
Miller, B. G. (2017). Formation and control of nitrogen oxides. Clean Coal Engineering Technology (pp. 507-538).
Mok, Y. S., Lee, H.-J., Dors, M., & Mizeraczyk, J. (2005). Improvement in selective catalytic reduction of nitrogen oxides by using dielectric barrier discharge. Chemical Engineering Journal, 110(1-3), 79-85.
Mok, Y. S., Lee, H. W., Hyun, Y. J., Ham, S. W., Kim, J. H., & Nam, I. S. (2001). Removal of NO and SO2 by pulsed corona discharge process. Korean Journal of Chemical Engineering, 18(3), 308-316.
Mok, Y. S., & Nam, I. S. (2002). Modeling of pulsed corona discharge process for the removal of nitric oxide and sulfur dioxide. Chemical Engineering Journal, 85(1), 87-97.
Moon, J. D., & Geum, S. T. (1998). Discharge and ozone generation characteristics of a ferroelectric-ball/mica-sheet barrier. IEEE Transactions on Industry Applications, 34(6), 1206-1211.
Nawrocki, J., & Kasprzyk-Hordern, B. (2010). The efficiency and mechanisms of catalytic ozonation. Applied Catalysis B: Environmental, 99(1-2), 27-42.
Normann, F., Andersson, K., Leckner, B., & Johnsson, F. (2009). Emission control of nitrogen oxides in the oxy-fuel process. Progress in Energy and Combustion Science, 35(5), 385-397.
Park, E., Chin, S., Jeong, J., & Jurng, J. (2012). Low-temperature NO oxidation over Mn/TiO2 nanocomposite synthesized by chemical vapor condensation: Effects of Mn precursor on the surface Mn species. Microporous and Mesoporous Materials, 163, 96-101.
Park, J. Y., Tomicic, I., Round, G. F., & Chang, J. S. (1999). Simultaneous removal of NOx and SO2 from NO-SO2-CO2-N2-O2 gas mixtures by corona radical shower systems. Journal of Physics D-Applied Physics, 32(9), 1006-1011.
Pekarek, S. (2012). Experimental study of surface dielectric barrier discharge in air and its ozone production. Journal of Physics D: Applied Physics, 45(7).
SchmidtSzalowski, K. (1996). Catalytic properties of silica packings under ozone synthesis conditions. Ozone: Science & Engineering, 18(1), 41-56.
Schmitt, K. L., Murray, D. M., & Dibble, T. S. (2009). Towards a consistent chemical kinetic model of electron beam irradiation of humid air. Plasma Chemistry and Plasma Processing, 29(5), 347-362.
Shen, B., Zhu, S., Zhang, X., Chi, G., Patel, D., Si, M., & Wu, C. (2018). Simultaneous removal of NO and Hg0 using Fe and Co co-doped Mn-Ce/TiO2 catalysts. Fuel, 224, 241-249.
Sun, C., Zhao, N., Zhuang, Z., Wang, H., Liu, Y., Weng, X., & Wu, Z. (2014). Mechanisms and reaction pathways for simultaneous oxidation of NOx and SO2 by ozone determined by in situ IR measurements. Journal of Hazardous Materials, 274, 376-383.
Wang, A., & Hou, Z. (2021). Reducing energy consumption in plasma NO conversion utilizing plasma aerodynamic effect. Chemical Engineering Journal, 408.
Wang, B., Song, Z., & Sun, L. (2021). A review: Comparison of multi-air-pollutant removal by advanced oxidation processes – Industrial implementation for catalytic oxidation processes. Chemical Engineering Journal, 409.
Wang, D., Cheng, J., Wang, B., Lou, J., Li, Y., Li, X., Li, Z., Liu, X., Meng, Q., Gao, P., & An, J. (2019a). Plasma-catalytic high-efficiency oxidation of NO over Co-Mn/Ti catalysts using surface dielectric barrier discharge plasma. Vacuum, 167, 249-254.
Wang, H., Zhuang, Z., Sun, C., Zhao, N., Liu, Y., & Wu, Z. (2016). Numerical evaluation of the effectiveness of NO2 and N2O5 generation during the NO ozonation process. Journal of Environmental Sciences, 41, 51-58.
Wang, L., Cheng, X., Wang, Z., Sun, R., Zhao, G., Feng, T., & Ma, C. (2019b). Reaction of NO + CO over Ce-modified Cu–FeOx catalysts at low temperature. Energy & Fuels, 33(11), 11688-11704.
Wang, M., Zhu, T., & Wang, H. (2010). Oxidation and removal of NO from flue gas by DC corona discharge combined with alkaline absorption. IEEE transactions on plasma science, 39(2), 704-710.
Wang, T., Sun, B. M., Xiao, H. P., Zeng, J. Y., Duan, E. P., Xin, J., & Li, C. (2012). Effect of reactor structure in DBD for nonthermal plasma processing of NO in N2 at ambient temperature. Plasma Chemistry and Plasma Processing, 32(6), 1189-1201.
Wang, X., Zhou, J., Jiang, C., Wang, J., Gui, K., & Thomas, H. R. (2019c). Precursor and dispersion effects of active species on the activity of Mn-Ce-Ti catalysts for NO abatement. Korean Journal of Chemical Engineering, 36(12), 1991-1999.
Wang, Z., Zhou, J., Zhu, Y., Wen, Z., Liu, J., & Cen, K. (2007). Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results. Fuel Processing Technology, 88(8), 817-823.
Wu, Z., Tang, N., Xiao, L., Liu, Y., & Wang, H. (2010). MnOx/TiO2 composite nanoxides synthesized by deposition-precipitation method as a superior catalyst for NO oxidation. Journal of Colloid and Interface Science, 352(1), 143-148.
Xu, F., Luo, Z., Cao, W., Wang, P., Wei, B., Gao, X., Fang, M., & Cen, K. (2009). Simultaneous oxidation of NO, SO2 and Hg0 from flue gas by pulsed corona discharge. Journal of Environmental Sciences, 21(3), 328-332.
Yin, S. E., Sun, B. M., Gao, X. D., & Xiao, H. P. (2009). The effect of oxygen and water vapor on nitric oxide conversion with a dielectric barrier discharge reactor. Plasma Chemistry and Plasma Processing, 29(6), 421-431.
Zeng, X., Huo, X., Zhu, T., Hong, X., & Sun, Y. (2016). Catalytic oxidation of NO over MnOx-CeO2 and MnOx-TiO2 catalysts. Molecules, 21(11).
Zhang, M., Li, C., Qu, L., Fu, M., Zeng, G., Fan, C., Ma, J., & Zhan, F. (2014). Catalytic oxidation of NO with O2 over FeMnOx/TiO2: Effect of iron and manganese oxides loading sequences and the catalytic mechanism study. Applied Surface Science, 300, 58-65.
Zhao, W., Zhang, S., Ding, J., Deng, Z., Guo, L., & Zhong, Q. (2016). Enhanced catalytic ozonation for NOx removal with CuFe2O4 nanoparticles and mechanism analysis. Journal of Molecular Catalysis A: Chemical, 424, 153-161.
行政院環境保護署空氣污染排放清冊[TEDS 11.0版] (2021)。
曾志富、郭麗雯、朱志忠、謝智林 (2019)。火力電廠SCR脫硝觸媒性能檢測與品質管理,台電工程月刊,頁91-109。
李灝銘,以低溫電漿去除揮發性有機物之研究,國立中央大學環境工程研究所博士論文,台灣 (2001)。
彭瀚萱,NSR觸媒結合電漿技術去除NOx之研究,國立中央大學環境工程研究所碩士論文,台灣 (2015)。 |