博碩士論文 109326025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.147.52.53
姓名 林昱衡(Yu-Heng Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以臭氧催化氧化與電漿催化系統氧化一氧化氮之效率探討
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-10-1以後開放)
摘要(中) 本研究致力於開發低溫高效之一氧化氮氧化技術,並比較電漿催化與臭氧催化氧化兩種控制技術,分別針對流量、反應溫度、氣流組成及觸媒穩定性進行測試,並探討各操作參數對NO氧化效率之影響。本研究使用兩種錳金屬前驅物浸漬於TiO2 (P25)以製備FeMn/TiO2觸媒,分別為硝酸錳與醋酸錳,並比較兩者對觸媒催化活性之影響。電漿催化系統之操作條件為270 ppm NO、氧含量20%、氣體流量1.2 L/min、空間速度15,000 h-1,結果顯示使用FeMn/TiO2 (MA)觸媒展現較佳之NO氧化效率,於SED =520 J/L時NO氧化效率達70±1.2%,然而氣流中含250 ppm SO2時,NO氧化效率下降至53±1.5%。使用臭氧機生成臭氧,於室溫下進行NO深度氧化,系統之操作條件為270 ppm NO、氣體流量2.5 L/min,O3/NO =1時,NO氧化效率達100%,生成212±5.0 ppm NO2,當O3/NO¬ =1.9時可將NO2完全氧化,生成97±3.1 ppm N2O5。臭氧催化氧化系統以FeMn/TiO2 (MA)為觸媒,溫度上升可促進N2O5生成,於反應溫度100℃、空間速度15,000 h-1,O3/NO =1.7時,N2O5濃度由60±4.9 ppm上升至101±5.6 ppm。觸媒之物化特性分析結果顯示FeMn/TiO2 (MA)觸媒具有較高之比表面積及孔體積,分別為47.4 m2/g及0.34 cm3/g,且此觸媒具有高比率之吸附氧(Oα)及Mn3+物種,可提升觸媒之催化活性,進而促進NO之氧化效率。
摘要(英) This study aims to develop a low-temperature, and high-efficiency technology for the oxidation of nitrogen oxide (NOx). Moreover, comparison of the catalyst for plasma catalysis and ozone catalytic oxidation (OZCO) is conducted. FeMn/TiO2 catalysts were prepared through the impregnation of manganese acetate (MA) or manganese nitrate (MN) precursors on TiO2 (P25) and tested for the oxidation of NO. Experimental results indicate that FeMn/TiO2 (MA) catalyst shows higher activities for NO oxidation if compared with FeMn/TiO2 (MN) catalyst. As the inlet NO concentration is controlled at 270 ppm, the NO oxidation efficiency could achieve 70±1.2% at SED =520 J/L. However, existence of SO2 lower the efficiency of NO oxidation. The NO oxidation efficiency dropped to 53±1.5%. The deep oxidation of NO by ozone could achieve 100% efficiency at O3/NO =1 and room temperature, NO2 concentration is measured as 212±5.0 ppm. NO2 is almost completely oxidized at O3/NO =1.9, producing 97±3.1 ppm N2O5. The concentration of N2O5 increased to 101±5.6 ppm as the temperature was increased to 100℃ at O3/NO =1.7 by the OZCO method. Characterization of catalyst indicates that FeMn/TiO2 (MA) catalyst has a higher BET specific surface area and pore volume, which are 47.4 m2/g and 0.34 cm3/g, respectively. Moreover, this catalyst has good oxidation property to promote NO oxidation due to higher Oα/Oβ and Mn3+/Mn4+ ratio.
關鍵字(中) ★ 一氧化氮
★ 臭氧
★ 電漿催化
★ NO深度氧化
★ 臭氧催化氧化
關鍵字(英) ★ nitric oxide
★ ozone
★ plasma catalysis
★ NO deep oxidation
★ ozone catalytic oxidation
論文目次 摘要 I
目錄 III
圖目錄 VI
表目錄 VIII
第一章 前言 1
1.1. 研究源起 1
1.2. 研究目的 3
第二章 文獻回顧 4
2.1 氮氧化物之介紹 4
2.1.1 氮氧化物的特性與來源 4
2.1.2 氮氧化物之生成機制 5
2.2 氮氧化物之控制技術 6
2.3 非熱電漿技術原理 9
2.3.1 NTP污染物去除機制 9
2.3.2 NTP反應器的種類 11
2.4 NTP去除污染物之影響因素 15
2.4.1 NTP反應器結構 17
2.4.2 電源供應參數 17
2.4.3 氣流組成 19
2.5 NTP-觸媒整合系統 21
2.6 NTP-觸媒整合系統應用於臭氧生成 23
2.7 以臭氧氧化氮氧化物 26
2.8 臭氧氧化NO之影響因素 26
2.9 觸媒對NO深度氧化 29
第三章 研究方法 32
3.1. 研究流程與架構 32
3.2. 觸媒選擇及製備 34
3.2.1. 觸媒材料選擇 34
3.2.2. 觸媒製備 34
3.3. 觸媒之物化特性分析 35
3.4. NO氧化實驗 37
3.4.1. 電漿催化系統 37
3.4.2. 臭氧催化氧化系統 39
3.4.3. 實驗分析 40
3.5. 動力學分析 42
3.6. 實驗結果之計算 43
3.7. 實驗之材料與設備 44
第四章 結果與討論 47
4.1. 觸媒特性分析 47
4.1.1. X光粉末繞射儀(XRD)晶相鑑定 47
4.1.2. X射線光電子能譜儀(XPS)分析 48
4.1.3. 觸媒之物理特性分析 50
4.2. 電漿催化對NO氧化效率之探討 52
4.2.1. 電漿催化系統之NOx濃度變化 53
4.2.2. O2對NO氧化效率之影響 55
4.2.3. SO2對NO氧化效率之影響 56
4.3. DBD電漿產生臭氧進行NO深度氧化 57
4.4. 臭氧分解測試 61
4.5. 臭氧催化氧化NO之效率探討 63
4.5.1. 溫度對臭氧催化氧化NO之影響 66
4.5.2. 臭氧氧化NO之動力分析 68
第五章 結論與建議 71
參考文獻 73
參考文獻 An, J., Shang, K., Lu, N., Hong, Y., Jiang, Y., Li, J., & Wu, Y. (2014). Performance of dielectric barrier discharge reactors on elemental mercury oxidation in the coal-fired flue gas. Plasma Science and Technology, 16(2), 155.
Anaghizi, S. J., Talebizadeh, P., Rahimzadeh, H., & Ghomi, H. (2015). The configuration effects of electrode on the performance of dielectric barrier discharge reactor for NOx removal. IEEE transactions on plasma science, 43(6), 1944-1953.
Boningari, T., Ettireddy, P. R., Somogyvari, A., Liu, Y., Vorontsov, A., McDonald, C. A., & Smirniotis, P. G. (2015). Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NO under oxygen-rich conditions. Journal of Catalysis, 325, 145-155.
Brogren, C., Karlsson, H. T., & Bjerle, I. (1997). Absorption of NO in an alkaline solution of KMnO4. Chemical Engineering & Technology, 20(6), 396-402.
Byun, Y., Koh, D. J., Shin, D. N., Cho, M., & Namkung, W. (2011). Polarity effect of pulsed corona discharge for the oxidation of gaseous elemental mercury. Chemosphere, 84(9), 1285-1289.
Chang, M. B., Kushner, M. J., & Rood, M. J. (1992). Removal of SO2 and the simultaneous removal of SO2 and NO from simulated flue-gas streams using dielectric barrier discharge plasmas. Plasma Chemistry and Plasma Processing, 12(4), 565-580.
Chen, H. L., Lee, H. M., & Chang, M. B. (2006). Enhancement of energy yield for ozone production via packed-bed reactors. Ozone: Science & Engineering, 28(2), 111-118.
Chen, H. L., Lee, H. M., Chen, S. H., & Chang, M. B. (2008). Review of packed-bed plasma reactor for ozone generation and air pollution control. Industrial & Engineering Chemistry Research, 47(7), 2122-2130.
Chen, H. L., Lee, H. M., Chen, S. H., Chang, M. B., Yu, S. J., & Li, S. N. (2009). Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: A review of the performance enhancement mechanisms, current status, and suitable applications. Environ Sci Technol, 43(7), 2216-2227.
Chen, R., Zhang, T., Guo, Y., Wang, J., Wei, J., & Yu, Q. (2021). Recent advances in simultaneous removal of SO2 and NOx from exhaust gases: Removal process, mechanism and kinetics. Chemical Engineering Journal, 420.
Chen, S., Wang, T., Wang, H., & Wu, Z. (2019). Insights into the reaction pathways and mechanism of NO removal by SDBD plasma via FTIR measurements. Fuel Processing Technology, 186, 125-136.
Cui, S., Zhong, Z., Liao, Y., Qi, L., & Fu, D. (2019). Simultaneous removal of NO and SO2 via an integrated system of nonthermal plasma combined with catalytic oxidation and wet electrostatic precipitator. Energy & Fuels, 33(10), 10078-10089.
Dinh, M. N., Giraudon, J. M., Vandenbroucke, A. M., Morent, R., De Geyter, N., & Lamonier, J. F. (2015). Post plasma-catalysis for total oxidation of trichloroethylene over Ce–Mn based oxides synthesized by a modified “redox-precipitation route”. Applied Catalysis B: Environmental, 172, 65-72.
Guo, R. T., Hao, J. K., Pan, W. G., & Yu, Y. L. (2015). Liquid phase oxidation and absorption of NO from flue gas: A review. Separation Science and Technology, 50(2), 310-321.
Huang, W. D., Ren, T. T., & Xia, W. D. (2007). Ozone generation by hybrid discharge combined with catalysis. Ozone-Science & Engineering, 29(2), 107-112.
Jõgi, I., Levoll, E., & Raud, J. (2016a). Plasma oxidation of NO in O2 N2 mixtures: The importance of back reaction. Chemical Engineering Journal, 301, 149-157.
Jõgi, I., Erme, K., Raud, J., & Laan, M. (2016b). Oxidation of NO by ozone in the presence of TiO2 catalyst. Fuel, 173, 45-51.
Jõgi, I., Erme, K., Levoll, E., Raud, J., & Stamate, E. (2018). Plasma and catalyst for the oxidation of NOx. Plasma Sources Science and Technology, 27(3).
Ji, R., Wang, J., Xu, W., Liu, X., Zhu, T., Yan, C., & Song, J. (2018). Study on the key factors of NO oxidation using O3: The oxidation product composition and oxidation selectivity. Industrial & Engineering Chemistry Research, 57(43), 14440-14447.
Jia, J., Zhang, P., & Chen, L. (2016). Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Applied Catalysis B: Environmental, 189, 210-218.
Kawamura, K., Hirasawa, A., Aoki, S., Kimura, H., Fujii, T., Mizutani, S., Higo, T., Ishikawa, R., Adachi, K., & Hosoki, S. (1979). Pilot plant experiment of NOx and SO2 removal from exhaust gases by electron beam irradiation. Radiation Physics and Chemistry (1977), 13(1), 5-12.
Kim, H. H., Prieto, G., Takashima, K., Katsura, S., & Mizuno, A. (2002). Performance evaluation of discharge plasma process for gaseous pollutant removal. Journal of Electrostatics, 55(1), 25-41.
Kim, H. H., Wu, C. X., Kinoshita, Y., Takashima, K., Katsura, S., & Mizuno, A. (2001). The influence of reaction conditions on SO2 oxidation in a discharge plasma reactor. IEEE Transactions on Industry Applications, 37(2), 480-487.
Kim, J. W., Lee, W. G., Hwang, I. S., Lee, J. Y., & Han, C. (2015). Recovery of tungsten from spent selective catalytic reduction catalysts by pressure leaching. Journal of Industrial and Engineering Chemistry, 28, 73-77.
Ko, J. H., Park, S. H., Jeon, J. K., Kim, S. S., Kim, S. C., Kim, J. M., Chang, D., & Park, Y. K. (2012). Low temperature selective catalytic reduction of NO with NH3 over Mn supported on Ce0.65Zr0.35O2 prepared by supercritical method: Effect of Mn precursors on NO reduction. Catalysis Today, 185(1), 290-295.
Li, X., Zhang, S., Jia, Y., Liu, X., & Zhong, Q. (2012). Selective catalytic oxidation of NO with O2 over Ce-doped MnOx/TiO2 catalysts. Journal of Natural Gas Chemistry, 21(1), 17-24.
Lin, F., Wang, Z., Ma, Q., He, Y., Whiddon, R., Zhu, Y., & Liu, J. (2016a). N2O5 formation mechanism during the ozone-based low-temperature oxidation deNOx process. Energy & Fuels, 30(6), 5101-5107.
Lin, F., Wang, Z., Ma, Q., Yang, Y., Whiddon, R., Zhu, Y., & Cen, K. (2016b). Catalytic deep oxidation of NO by ozone over MnOx loaded spherical alumina catalyst. Applied Catalysis B: Environmental, 198, 100-111.
Lin, F., Wang, Z., Shao, J., Yuan, D., He, Y., Zhu, Y., & Cen, K. (2017). Promotional effect of spherical alumina loading with manganese-based bimetallic oxides on nitric-oxide deep oxidation by ozone. Chinese Journal of Catalysis, 38(7), 1270-1280.
Lin, F., Wang, Z., Zhang, Z., He, Y., Zhu, Y., Shao, J., Yuan, D., Chen, G., & Cen, K. (2020). Flue gas treatment with ozone oxidation: An overview on NO, organic pollutants, and mercury. Chemical Engineering Journal, 382.
Lin, H., Gao, X., Luo, Z., Cen, K., Pei, M., & Huang, Z. (2004). Removal of NOx from wet flue gas by corona discharge. Fuel, 83(9), 1251-1255.
Loiland, J. A., & Lobo, R. F. (2014). Low temperature catalytic NO oxidation over microporous materials. Journal of Catalysis, 311, 412-423.
Ma, J., Wang, C., & He, H. (2017a). Transition metal doped cryptomelane-type manganese oxide catalysts for ozone decomposition. Applied Catalysis B: Environmental, 201, 503-510.
Ma, S. M., Zhao, Y. C., Yang, J. P., Zhang, S. B., Zhang, J. Y., & Zheng, C. G. (2017b). Research progress of pollutants removal from coal-fired flue gas using non-thermal plasma. Renewable & Sustainable Energy Reviews, 67, 791-810.
Miller, B. G. (2017). Formation and control of nitrogen oxides. Clean Coal Engineering Technology (pp. 507-538).
Mok, Y. S., Lee, H.-J., Dors, M., & Mizeraczyk, J. (2005). Improvement in selective catalytic reduction of nitrogen oxides by using dielectric barrier discharge. Chemical Engineering Journal, 110(1-3), 79-85.
Mok, Y. S., Lee, H. W., Hyun, Y. J., Ham, S. W., Kim, J. H., & Nam, I. S. (2001). Removal of NO and SO2 by pulsed corona discharge process. Korean Journal of Chemical Engineering, 18(3), 308-316.
Mok, Y. S., & Nam, I. S. (2002). Modeling of pulsed corona discharge process for the removal of nitric oxide and sulfur dioxide. Chemical Engineering Journal, 85(1), 87-97.
Moon, J. D., & Geum, S. T. (1998). Discharge and ozone generation characteristics of a ferroelectric-ball/mica-sheet barrier. IEEE Transactions on Industry Applications, 34(6), 1206-1211.
Nawrocki, J., & Kasprzyk-Hordern, B. (2010). The efficiency and mechanisms of catalytic ozonation. Applied Catalysis B: Environmental, 99(1-2), 27-42.
Normann, F., Andersson, K., Leckner, B., & Johnsson, F. (2009). Emission control of nitrogen oxides in the oxy-fuel process. Progress in Energy and Combustion Science, 35(5), 385-397.
Park, E., Chin, S., Jeong, J., & Jurng, J. (2012). Low-temperature NO oxidation over Mn/TiO2 nanocomposite synthesized by chemical vapor condensation: Effects of Mn precursor on the surface Mn species. Microporous and Mesoporous Materials, 163, 96-101.
Park, J. Y., Tomicic, I., Round, G. F., & Chang, J. S. (1999). Simultaneous removal of NOx and SO2 from NO-SO2-CO2-N2-O2 gas mixtures by corona radical shower systems. Journal of Physics D-Applied Physics, 32(9), 1006-1011.
Pekarek, S. (2012). Experimental study of surface dielectric barrier discharge in air and its ozone production. Journal of Physics D: Applied Physics, 45(7).
SchmidtSzalowski, K. (1996). Catalytic properties of silica packings under ozone synthesis conditions. Ozone: Science & Engineering, 18(1), 41-56.
Schmitt, K. L., Murray, D. M., & Dibble, T. S. (2009). Towards a consistent chemical kinetic model of electron beam irradiation of humid air. Plasma Chemistry and Plasma Processing, 29(5), 347-362.
Shen, B., Zhu, S., Zhang, X., Chi, G., Patel, D., Si, M., & Wu, C. (2018). Simultaneous removal of NO and Hg0 using Fe and Co co-doped Mn-Ce/TiO2 catalysts. Fuel, 224, 241-249.
Sun, C., Zhao, N., Zhuang, Z., Wang, H., Liu, Y., Weng, X., & Wu, Z. (2014). Mechanisms and reaction pathways for simultaneous oxidation of NOx and SO2 by ozone determined by in situ IR measurements. Journal of Hazardous Materials, 274, 376-383.
Wang, A., & Hou, Z. (2021). Reducing energy consumption in plasma NO conversion utilizing plasma aerodynamic effect. Chemical Engineering Journal, 408.
Wang, B., Song, Z., & Sun, L. (2021). A review: Comparison of multi-air-pollutant removal by advanced oxidation processes – Industrial implementation for catalytic oxidation processes. Chemical Engineering Journal, 409.
Wang, D., Cheng, J., Wang, B., Lou, J., Li, Y., Li, X., Li, Z., Liu, X., Meng, Q., Gao, P., & An, J. (2019a). Plasma-catalytic high-efficiency oxidation of NO over Co-Mn/Ti catalysts using surface dielectric barrier discharge plasma. Vacuum, 167, 249-254.
Wang, H., Zhuang, Z., Sun, C., Zhao, N., Liu, Y., & Wu, Z. (2016). Numerical evaluation of the effectiveness of NO2 and N2O5 generation during the NO ozonation process. Journal of Environmental Sciences, 41, 51-58.
Wang, L., Cheng, X., Wang, Z., Sun, R., Zhao, G., Feng, T., & Ma, C. (2019b). Reaction of NO + CO over Ce-modified Cu–FeOx catalysts at low temperature. Energy & Fuels, 33(11), 11688-11704.
Wang, M., Zhu, T., & Wang, H. (2010). Oxidation and removal of NO from flue gas by DC corona discharge combined with alkaline absorption. IEEE transactions on plasma science, 39(2), 704-710.
Wang, T., Sun, B. M., Xiao, H. P., Zeng, J. Y., Duan, E. P., Xin, J., & Li, C. (2012). Effect of reactor structure in DBD for nonthermal plasma processing of NO in N2 at ambient temperature. Plasma Chemistry and Plasma Processing, 32(6), 1189-1201.
Wang, X., Zhou, J., Jiang, C., Wang, J., Gui, K., & Thomas, H. R. (2019c). Precursor and dispersion effects of active species on the activity of Mn-Ce-Ti catalysts for NO abatement. Korean Journal of Chemical Engineering, 36(12), 1991-1999.
Wang, Z., Zhou, J., Zhu, Y., Wen, Z., Liu, J., & Cen, K. (2007). Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results. Fuel Processing Technology, 88(8), 817-823.
Wu, Z., Tang, N., Xiao, L., Liu, Y., & Wang, H. (2010). MnOx/TiO2 composite nanoxides synthesized by deposition-precipitation method as a superior catalyst for NO oxidation. Journal of Colloid and Interface Science, 352(1), 143-148.
Xu, F., Luo, Z., Cao, W., Wang, P., Wei, B., Gao, X., Fang, M., & Cen, K. (2009). Simultaneous oxidation of NO, SO2 and Hg0 from flue gas by pulsed corona discharge. Journal of Environmental Sciences, 21(3), 328-332.
Yin, S. E., Sun, B. M., Gao, X. D., & Xiao, H. P. (2009). The effect of oxygen and water vapor on nitric oxide conversion with a dielectric barrier discharge reactor. Plasma Chemistry and Plasma Processing, 29(6), 421-431.
Zeng, X., Huo, X., Zhu, T., Hong, X., & Sun, Y. (2016). Catalytic oxidation of NO over MnOx-CeO2 and MnOx-TiO2 catalysts. Molecules, 21(11).
Zhang, M., Li, C., Qu, L., Fu, M., Zeng, G., Fan, C., Ma, J., & Zhan, F. (2014). Catalytic oxidation of NO with O2 over FeMnOx/TiO2: Effect of iron and manganese oxides loading sequences and the catalytic mechanism study. Applied Surface Science, 300, 58-65.
Zhao, W., Zhang, S., Ding, J., Deng, Z., Guo, L., & Zhong, Q. (2016). Enhanced catalytic ozonation for NOx removal with CuFe2O4 nanoparticles and mechanism analysis. Journal of Molecular Catalysis A: Chemical, 424, 153-161.
行政院環境保護署空氣污染排放清冊[TEDS 11.0版] (2021)。
曾志富、郭麗雯、朱志忠、謝智林 (2019)。火力電廠SCR脫硝觸媒性能檢測與品質管理,台電工程月刊,頁91-109。
李灝銘,以低溫電漿去除揮發性有機物之研究,國立中央大學環境工程研究所博士論文,台灣 (2001)。
彭瀚萱,NSR觸媒結合電漿技術去除NOx之研究,國立中央大學環境工程研究所碩士論文,台灣 (2015)。
指導教授 張木彬(Moo-Been Chang) 審核日期 2022-9-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明