博碩士論文 109223049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.145.105.208
姓名 曾宥勲(Yu-Hsun Tseng)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究
(Synthesis of Chiral Covalent Organic Frameworks via Ring-Opening Metathesis Polymerization and Its Application Study in Asymmetric and Catalytic Polyene Cyclization)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 大自然中部份天然物為多環化合物,這類化合物擁有良好的生物活性以及藥物開發潛力,因此建構出具有立體選擇性的多環主結構成為化學家追求的目標。

本論文目的在於開發新型手性共價有機框架材料,並應用至不對稱多烯環化反應上。以 R 型 1,1′-聯-2-萘酚之衍生物作為催化單體,並使用格拉布二代試劑將帶有降?烯基的催化單體和架橋分子進行開環置換聚合反應。此法合成的手性共價有機框架材料以碳碳雙鍵鏈接起材料骨架,與四氯化錫進行配位後,形成路易士酸輔助手性布式酸並投入不對稱多烯環化反應上,經不同反應條件篩選後,最終環化產物可超過 40% 的鏡像超越值。
摘要(英) Polycyclic scaffolds are frequently seen in natural products and drugs; therefore, developing synthetic strategies and methods for constructing these scaffolds are essential, especially in an enantioselective way.

In this thesis, we aimed to develop a new chiral covalent organic framework (CCOFs), and apply it to enantioselective polyene cyclization. (R)-Binol with norbornenes on the two arms was used as a monomer and polymerized by using Grubbs second-generation catalyst through ring-opening metathesis polymerization (ROMP) for the formation of CCOF. After treating Tin chloride to generate a Lewis acid-assisted chiral Brønsted acid complex, the activated CCOF was applied to the enantioselective polyene cyclization. Different reaction conditions were then screened to provide, the best result with more than 40% enantiomeric excess.
關鍵字(中) ★ 不對稱多烯環化反應
★ 共價有機框架材料
★ 開環置換聚合反應
關鍵字(英) ★ asymmetric polyene cyclization
★ Covalent Organic Framework
★ Ring-Opening Metathesis Polymerization
論文目次 中文摘要……………………………………………………………...………….ⅰ
Abstract……………………………………………………………...…………..ⅱ
謝誌…………………………………………………………...……………...…ⅲ
總目錄……………………………………………………………...…………....ⅴ
圖目錄……………………………………………………………..…………..ⅵii
式目錄……………………………………………………………...……………X
表目錄……………………………………………………………...…………..Xii
縮寫說明…………………………………………………………...……...…..Xiⅴ
第一章 緒論……………………………………………..…………...…………1
1-1 多烯環化反應發展介紹…………………………………………………1
1-2 不對稱多烯環化反應之合成策略回顧…………………………………2
1-3 共價有機框架材料………………………………………………..……11
1-4 共價有機框架材料之鍵連方式回顧…………………………..………12
1-5 手性共價有機框架材料……………………………………………..…19
1-6 開環置換聚合反應……………………………………………..………23
1-7 研究動機…………………………………………………………..……26
第二章 結果與討論……………………………………………………...……29
2-1 含有苯乙烯基單體和多烯環化反應起始物之合成………..…………29
2-2 以苯乙烯基聚合之手性有機框架材料合成與應用………………..…35
2-3 以苯乙烯聚合之手性有機框架材料之質譜鑑定…………………..…38
2-4 含有降?烯基單體和架橋分子之合成……………………………..…39
2-5 以降?烯基聚合之手性有機框架材料合成與應用…………..………43
2-6 不對稱多烯環化反應條件篩選………………………………..………46
2-6-1 不同路易士酸之反應測試…………………………………..……46
2-6-2 不同反應溶劑之反應測試……………………………………..…47
2-7 手性有機框架材料合成條件篩選………………………….…………48
2-7-1 不同反應溶劑之反應測試……………………………………..…48
2-7-2 不同反應時間之反應測試………………………………………..50
2-7-3 不同世代格拉布試劑之反應測試……………………………..…51
2-7-4 不同終止試劑之反應測試…………………………………..……53
2-7-5 不同架橋分子之反應測試……………………………………..…54
2-7-6 不同當量架橋分子之反應測試……………………………..……59
2-7-7 不同當量格拉布催化劑之反應測試………………………..……64
2-7-8 以其他方式合成手性有機框架材料並探討其應用…………..…67
2-8 比較單體與手性共價有機框架材料兩者催化功能…….…….……....71
2-9 藉由手性和非手性之 LBA 進行不對稱多烯環化反應…….………72
2-10 以降?烯基聚合之手性有機框架材料性質鑑定……...…………….73
2-11 以手性共價有機框架材料催化不對稱反應之示意圖………………77
第三章 結論…………………………………………………………………...78
第四章 實驗步驟…………………………………………………………...…79
4-1 General Information…………………………………………………..…79
4-2 Synthetic Procedures and Spectra Data………………………….………80
第五章 參考文獻……………………………………………………….……110
附錄…………………………………………………………………...………117
參考文獻 1. Gershenzon, J.; Dudareva, N. The function of terpene natural products in the natural world. Nat. Chem. Biol. 2007, 3, 408–414.
2. Yoder, R. A.; Johnston, J. N. A case study in biomimetic total synthesis: polyolefin carbocyclizations to terpenes and steroids. Chem. Rev. 2005, 105, 4730-4756.
3. Wendt, K. U.; Poralla, K.; Schulz, G. E. Structure and function of a squalene cyclase. Science. 1997, 277, 1811–1815.
4. Corey, E. J.; Lin, S. A Short Enantioselective Total Synthesis of Dammarenediol II. J. Am. Chem. Soc. 1996, 118, 8765–8766.
5. Ishihara, K.; Nakamura, S.; Yamamoto, H. The First Enantioselective Biomimetic Cyclization of Polyprenoids. J. Am. Chem. Soc. 1999, 121, 4906-4907.
6. Ishihara, K.; Ishibashi, H.; Yamamoto, H. Enantioselective Biomimetic Cyclization of Homo(polyprenyl)arenes. A New Entry to (+)-Podpcarpa-8,11,13-triene Diterpenoids and (-)-Tetracyclic Polyprenoid of Sedimentary Origin. J. Am. Chem. Soc. 2001, 123, 1505-1506.
7. Kumazawa, K.; Ishihara, K.; Yamamoto, H. Tin(IV) Chloride-Chiral Pyrogallol Derivatives as New Lewis Acid-Assisted Chiral Brønsted Acids for Enantioselective Polyene Cyclization. Org. Lett. 2004, 6, 2551-2554.
8. Ishibashi, H.; Ishihara, K.; Yamamoto, H. A New Artificial Cyclase for Polyprenoids: Enantioselective Total Synthesis of (-)-Chromazonarol, (+)-8-epi-Puupehedione, and (-)-11´-Deoxytaondiol Methyl Ether. J. Am. Chem. Soc. 2004, 126, 11122-11123.
9. Surendra, K.; Corey, E. J. Highly Enantioselective Proton-Initiated Polycyclization of Polyenes. J. Am. Chem. Soc. 2012, 134, 11992-11994.
10. Sakakura, A.; Sakuma, M.; Ishihara, K. Chiral Lewis Base-Assisted Brønsted Acid (LBBA)-Catalyzed Enantioselective Cyclization of 2-Geranylphenols. Org. Lett. 2011, 13, 3130-3133.
11. Zhao, Y. J.; Loh, T,P. Bioinspired Polyene Cyclization Promoted by Intermolecular Chiral Acetal-SnCl4 or Chiral N-Acetal-TiCl4: Investigation of the Mechanism and Identification of the Key Intermediates. J. Am. Chem. Soc. 2008, 130, 10024–10029.
12. Sakakura, A.; Ukai1, A.; Ishihara, K. Enantioselective halocyclization of polyprenoids induced by nucleophilic phosphoramidites. Nature. 2007, 445, 900-903.
13. Knowles, R. R.; Lin, S.; Jacobsen, E. N. Enantioselective Thiourea-Catalyzed Cationic Polycyclizations. J. Am. Chem. Soc. 2010, 132, 5030–5032.
14. Rendler, S.; MacMillan, D. W. C. Enantioselective Polyene Cyclization via Organo-SOMO Catalysis. J. Am. Chem. Soc. 2010, 132, 5027–5029.
15. Mullen, C. A.; Gagné, R. Aymmetric Oxidative Cation/Olefin Cyclization of Polyenes: Evidence for Reversible Cascade Cyclization. Angew. Chem., Int. Ed. 2008, 47, 6011-6014.
16. Delpont, N.; Pérez-Galán, P.; Spiegl, D.; Raducan, M.; Bour, C.; Sinisi, R.; Echavarren, A. M. Modular chiral gold(I) phosphite complexes. Catal. Sci. Technol. 2013, 3, 3007-3012.
17. Nath, I.; Chakraborty, J.; Verpoort, F. Metal organic frameworks mimicking natural enzymes: a structural and functional analogy. Chem. Soc. Rev. 2016, 45, 4127-4170.
18. Kaneti, Y. V.; Dutta, S.; Hossain, M. S. A.; Shiddiky, M. J. A.; Tung, K. L.; Shieh, F. K.; Tsung, C. K.; Wu, K. C. W.; Yamauchi, Y. Strategies for improving the functionality of zeolitic imidazolate frameworks: tailoring nanoarchitectures for functional applications. Adv. Mater. 2017, 29, 1700213.
19. Manzano, M.; Vallet-Regi, M. Mesoporous silica nanoparticles for drug delivery. Adv. Funct. Mater. 2020, 30, 1902634.
20. Hatton, B.; Landskron, K.; Whitnall, W.; Perovic, D.; Ozin, G. A. Past, present, and future of periodic mesoporous organosilicas–The PMOs. Acc. Chem. Res. 2005, 38, 305-312.
21. Copper. A. I. Conjugated microporous polymers. Adv. Mater. 2009, 26, 1291-1295.
22. Long, J. R.; Yaghi, O. M. The pervasive chemistry of metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1213-1214.
23. Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Chemistry: porous, crystalline, covalent organic frameworks. Science. 2005, 310, 1166-1170.
24. Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klock, C.; O’Keeffe, M.; Yaghi, O. M. A crystalline imine-linked 3-D porous covalent organic framework. J. Am. Chem. Soc. 2009, 24, 4570-4571.
25. Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H; Oisaki, K.; Yaghi, O. M. Crystalline Covalent Organic Frameworks with Hydrazone Linkages. J. Am. Chem. Soc. 2011, 133, 11478-11481.
26. Dalapati, S.; Jin, S.; Gao, J.; Xu, Y.; Nagai, A.; Jiang, D. An Azine-Linked Covalent Organic Framework. J. Am. Chem. Soc. 2013, 135, 17310-17313.
27. Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. Construction of Crystalline 2D Covalent Organic Frameworks with Remarkable Chemical (Acid/Base) Stability via a Combined Reversible and Irreversible Route. J. Am. Chem. Soc. 2012, 134, 19524-19527.
28. Fang , Q.; Zhuang, Z.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J.; Qiu, S.; Yan, Y. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat. Commun. 2014, 5, 4503.
29. Jackson, K. T.; Reich, T. E.; El-Kaderi, H. M. Targeted synthesis of a porous borazine-linked covalent organic framework. Chem. Commun. 2012, 48, 8823-8825.
30. Kuhn, P.; Antonietti, M.; Thomas, A. Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis. Angew. Chem., Int. Ed. 2008, 47, 3450-3453.
31. Nagai, A.; Chen, X.; Feng, X.; Ding, X.; Guo, Z.; Jiang, D. A Squaraine-Linked Mesoporous Covalent Organic Framework. Angew. Chem., Int. Ed. 2013, 52, 3770-3774.
32. Jin, E.; Asada, E. M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q.; Jiang, D. Two-dimensional sp 2 carbon–conjugated covalent organic frameworks. Science. 2017, 357, 673-676.
33. Chen, X.; Addicoat, M.; Jin, E.; Xu, H.; Hayashi, T.; Xu, F.; Huang, N.; Irle, S.; Jiang, D. Designed synthesis of double-stage two-dimensional covalent organic frameworks. Sci. Rep. 2015, 5, 14650.
34. Ding, S.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W.; Su, C.; Wang, W. Construction of Covalent Organic Framework for Catalysis: Pd/COF-LZU1 in Suzuki–Miyaura Coupling Reaction. J. Am. Chem. Soc. 2011, 133, 19524-19527.
35. Xu, H.; Chen, X.; Gao, J.; Lin, J.; Addicoat, M.; Irle, S.; Jiang, D. Catalytic covalent organic frameworks via pore surface engineering. Chem. Commun. 2014, 50, 1292–1294.
36. Xu, H.; Gao, J.; Jiang, D. Sable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 2015, 7, 905–912.
37. Wang, X.; Han, X.; Zhang, J.; Wu, X.; Liu, Y.; Cui, Y. Homochiral 2D Porous Covalent Organic Frameworks for Heterogeneous Asymmetric Catalysis. J. Am.Chem. Soc. 2016, 138, 12332–12335.
38. Ma, H.; Kan, J.; Chen, G.; Chen, C.; Dong, Y. Pd NPs-Loaded Homochiral Covalent Organic Framework for Heterogeneous Asymmetric Catalysis. Chem. Mater. 2017, 29, 6518–6524.
39. Calderon, N.; Ofstead, E.; Judy, W. Mechanistic aspects of olefin metathesis. Angew. Chem., Int. Ed. 1976, 15, 401-409.
40. Bielawskia, C. W.; Grubbs, H. R. Living ring-opening metathesis polymerization. Prog. Polym. Sci. 2007, 32, 1–29.
41. Lin, S. C.; Chein, R. J. Total Synthesis of the Labdane Diterpenes Galanal A and B from Geraniol. J. Org. Chem. 2017, 82, 1575–1583.
42. Gopalakrishnan, D.; Dichtel, W. R. Direct Detection of RDX Vapor Using a Conjugated Polymer Network. J. Am. Chem. Soc. 2013, 135, 8357−8362.
43. 謝欣翰. 掌性共價有機框架材料的設計與合成並應用在多烯環化反應. 國立中央大學, 2021.
44. 洪聖宸. 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應. 國立中央大學, 2021.
45. Vidal, F.; McQuade, J.; Lalancette, R.; Jäkle, F. ROMP-Boranes as Moisture-Tolerant and Recyclable Lewis Acid Organocatalysts. J. Am. Chem. Soc. 2020, 142, 14427−14431.
46. Fadlallah, S.; Peru, A. A. M.; Longé, L.; Allais, F. Chemo-enzymatic synthesis of a levoglucosenone-derived bi-functional monomer and its ring-opening metathesis polymerization in the green solvent Cyrene™. Polym. Chem. 2020, 11, 7471-7475.
47. Choi, T. L.; Grubbs, R. H. Controlled Living Ring-Opening-Metathesis Polymerization by a Fast-Initiating Ruthenium Catalyst. Angew. Chem., Int. Ed. 2003, 42, 1743-1746.
48. Parke, S.M.; Hupf, E.; Matharu, G. K.; Aguiar, I. D.; Xu, L.; Yu, H.; Boone, M. P.; Souza, G. L. C. D.; McDonald, R.; Ferguson, M. J.; He, G.; Brown, A.; Rivard, E. Aerobic Solid State Red Phosphorescence from Benzobismole Monomers and Patternable Self-Assembled Block Copolymers. Angew. Chem., Int. Ed. 2018, 58, 14841-14846.
49. Kohlhaas, M.; Zähres, M.; Mayer, C.; Engeser, M.; Merten, C.; Niemeyer, J. Chiral hydrogen-bonded supramolecular capsules: synthesis, characterization and complexation of C70. Chem. Commun. 2019, 55, 3298-3301.
50. Schevenels, F. T.; Shen, M.; Snyder, S. A. Alkyldisulfanium Salts: Isolable, Electrophilic Sulfur Reagents Competent for Polyene Cyclizations. Org. Lett. 2017, 19, 2–5.
51. Le, P. Q.; Nguyen, T. S.; May, J. A. A General Method for the Enantioselective Synthesis of α-Chiral Heterocycles. Org. Lett. 2012, 14, 6104–6107.
52. Li, M.; Jin, R. Z.; Lue, G. H.; Bian, Z.; Ding, M. X.; Gao, L. X. Synthesis and applications of 3-[6-(hydroxymethyl)pyridin-2-yl]-1,1′- bi-2-naphthols or 3,3′-bis[6-(hydroxymethyl)pyridin-2-yl]-1,1′-bi-2- naphthols. Synthesis. 2007, 16, 2461-2470.
53. Harned, A. M.; He,H. S.; Toy, P. H.; Flynn, D. L.; Hanson, P. R. Multipolymer Solution-Phase Reactions: Application to the Mitsunobu Reaction. J. Am. Chem. Soc. 2005, 127, 52–53.
指導教授 陳榮傑 謝發坤(Rong-Jie Chein Fa-Kuen Shieh) 審核日期 2022-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明