博碩士論文 107521032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:105 、訪客IP:3.138.181.42
姓名 鄭力瑜(Li-Yu Cheng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於ECG生醫訊號檢測之類比前端可調式增益放大器
(A Programmable Analog Front-End Amplifier for ECG Biomedical Signal Detection)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 光耦合隔離系統 之接收端晶片電路設計與實現
★ 應用於光耦合隔離系統之發送端雜訊整形 類比轉數位轉換器★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-15以後開放)
摘要(中) 隨著近期健康樂活的觀念抬頭和高齡化社會的影響,人們越來越重視健康保健的重
要性。科技的演進以及健康的保衛使生醫電子領域逐漸受到重視,穿戴式裝置產業也因
此而興盛。穿戴式裝置提供民眾即時的醫療監控,在運動當下可透過裝置取得自身心跳、
壓力、肌力等數據,並利用無線傳輸技術將資訊同步至行動裝置中。由於生理訊號相當
微小,在穿戴式裝置中如何不受雜訊影響則成為重要的課題,本電路以生醫醫療為出發
點,低功耗、低雜訊為開發指標,期許研究成果能對社會大眾福祉有所助益。
本論文實現應用於ECG 生理訊號之生醫類比前端可調式放大器,並分為低雜訊放
大器(LNA)以及可調增益放大器(PGA)兩個部分,系統架構採用電容耦合式儀表放大器
(CCIA)以阻絕電極貼片端所產生的直流偏移。電路架構採用電流重複使用技術(Current-
Reusing)使相同電流下擁有兩倍的轉導值,提高電流使用效率(??/?? ),實現生醫晶片低
功耗、低雜訊之訴求。而透過頻譜分析可推估心電訊號(ECG)的頻率大約為0.5~200 Hz,
本作品使用虛擬電阻(Pseudo Resistor)提供的高阻值達到電路對低頻的訊號擷取,並採用
源極退化(Source Degeneration)使電路擁有更高的相位餘裕和線性度以利後級A/D 訊號
處理。PGA 電路則是利用開關的切換得到不同的電容比值,可根據生理訊號的不同振幅
做相應的增益調控。
本電路採用台積電0.18μm CMOS 1P6M 製程,晶片面積約佔0.72 mm2,電源供
應電壓為1.2V,整體電路功耗為1.495 μW,電路頻寬為0.5~200 Hz。透過可調增益放
大器後分別可得到54 dB、48 dB、42 dB 之增益,應用頻寬內輸入雜訊為0.45 μVrms,
雜訊效率因子(Noise Efficient Factor)為1.69。
摘要(英) With the impact of the aging society and the growing conscience of healthy life, people are
paying more attention to the health care. As technology is progressing as well as the awareness
of health care, biological electrical field has become increasingly important in recent years.
Wearable devices, due to this, are used a lot more. Provided with a real-time medical monitor,
people can gain information of their heart beat rates, heart pressure and muscle condition while
exercising. Given that the biological signal is tiny, it is worth discussing how to decrease the
influence of noise on these wearable devices. The proposed circuit that is based on biomedical
usage sets low power consumption and low noise as its development targets, which are
indicators that can benefit the world.
This thesis presents a design of programmable analog front-end amplifier for ECG
biomedical signal detection and is composed of low noise amplifier (LNA) and programmable
gain amplifier (PGA). Capacitor-coupled instrumentation amplifier (CCIA) architecture is
applied to both parts for rejecting DC offset of front-end electrode-tissue. The current-reusing
technique is used for twice transconductance with same current, which let MOSFETs operate
with high ??/?? ratio and meet the demands of biomedical circuit for low-power and lownoise
. We can estimate the bandwidth of ECG signal from database is about 0.5 to 200 Hz by
spectrum analysis. Using the high impedance from pseudo resistor, the proposed circuit manage
to capture the extremely low-frequency of ECG signal. Source degeneration design technique
is adopted to have more phase margin and linearity in the proposed circuit, which makes output
signal performance better in total harmonic distortion. The switched are used in PGA circuit to
obtain different capacitance ratio, for adjusting the gain according to the different amplitudes
of the biological signal.
These circuits are designed in TSMC 0.18 μm CMOS 1P6M process and the chip area is
0.85 mm2. The power consumption is 1.495 μW for 1.2 V power supply voltage. The
iii
minimum low cut-off frequency is 0.5 Hz and application bandwidth is 200 Hz. With PGA,
the system gain can be 54 dB, 48 dB, 42 dB respectively. Finally, input-referred noise is 0.45
μVrms and noise efficiency factor (NEF) is 1.69.
關鍵字(中) ★ 類比前端低雜訊放大器
★ 虛擬電阻
★ 電流重複利用
關鍵字(英) ★ Analog Front-end Amplifier
★ Pseudo Resistor
★ Current Reusing
論文目次 摘要 ............................................................................................................................................. i
Abstract....................................................................................................................................... ii
致謝 ............................................................................................................................................ ii
圖目錄 ..................................................................................................................................... viii
表目錄 ....................................................................................................................................... xi
第一章 緒論 .............................................................................................................................. 1
1.1 背景 .............................................................................................................................. 1
1.2 研究動機 ..................................................................................................................... 1
1.3 論文貢獻 ..................................................................................................................... 3
第二章 類比前端生醫放大器系統探討與規格制定 .............................................................. 4
2.2 非理想效應 ................................................................................................................. 5
2.2.1 熱雜訊 (Thermal Noise) ................................................................................ 5
2.2.2 閃爍雜訊 (Flicker Noise) ............................................................................... 6
2.2.3 環境雜訊 (Background Noise) ...................................................................... 7
2.2.4 直流偏移電壓 (DC Offset) ............................................................................ 8
2.3 低雜訊放大器設計技巧 ............................................................................................. 9
2.3.1 弱反轉區特性 .................................................................................................. 9
2.3.2 電流重複利用技術(Current Reuse) ............................................................ 11
2.3.3 類比前端放大器系統架構 ............................................................................ 14
2.3.4 電路雜訊考量 ................................................................................................ 14
2.4 類比前端放大器之電路系統規格 ........................................................................... 17
第三章 生醫放大器系統 ........................................................................................................ 19
3.1 生醫類比放大器系統 ............................................................................................... 19
3.1.1 傳統儀表放大器(Instrument Amplifier) ..................................................... 19
3.1.2 交流耦合放大器(AC Coupling Amplifier) ................................................. 20
3.1.3 T 型(T-network)電容放大器 ......................................................................... 21
3.2 虛擬電阻 ................................................................................................................. 24
第四章 低雜訊低功耗可調增益類比前端放大器 ................................................................ 26
4.1 電路系統架構 ............................................................................................................ 26
4.1.1 規格制定與考量 ............................................................................................. 26
4.1.2 LNA 運算放大器架構 .................................................................................... 29
4.2 自偏壓共模回授電路 ............................................................................................... 30
4.2.1 第一級放大器自偏壓回授電路 .................................................................... 30
4.2.2 第二級放大器自偏壓回授電路 .................................................................... 32
4.3 源極退化設計技巧 (Source Degeneration) ........................................................... 34
4.4 虛擬電阻設計與應用 ............................................................................................... 34
4.5 可調增益放大器設計 ............................................................................................... 36
4.6 電路總結 ................................................................................................................... 39
4.7 電路模擬結果 ........................................................................................................... 42
第五章 佈局考量與量測 ........................................................................................................ 54
5.1 電路佈局方式 ........................................................................................................... 54
vii
5.2 佈局考量 ................................................................................................................... 57
5.2 量測規劃 ................................................................................................................... 59
5.3 量測結果 ................................................................................................................... 64
第六章 結論與未來展望 ........................................................................................................ 70
6.1 文獻比較 ................................................................................................................... 70
6.2 未來展望 .................................................................................................................... 71
參考文獻 .................................................................................................................................. 72
參考文獻 [1] J.Webter , “Medical Instrumentation Application and Design,” John Wiley and
Sons,INC.,1998
[2] Y. Gao , “Heart Monitor Using Flexible Capacitive ECG Electrodes,” in IEEE
Transactions on Instrumentation and Measurement, vol. 69, no. 7, pp. 4314-4323, July
2020
[3] X. Zou, X. Xu, L. Yao, and Y. Lian, “A 1-V 450-nW Fully Integrated Programmable
Biomedical Sensor Interface Chip,” IEEE J. Solid-State Circuits, vol. 44, pp. 1067-1077,
2009
[4] R. R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural
recording applications,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 958–65, Jun. 2003.
[5] K. A. Ng and Y. P. Xu, “A Compact, Low Input Capacitance Neural Recording Amplifier,”
in IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 5, pp. 610-620, Oct.
2013, doi: 10.1109/TBCAS.2013.2280066.
[6] S. Zhang, X. Zhou and Q. Li, “A Voltage Swing Robust Pseudo-Resistor Structure for
Biomedical Front-end Amplifier,” 2018 IEEE Asia Pacific Conference on Circuits and
Systems (APCCAS), 2018, pp. 61-64, doi: 10.1109/APCCAS.2018.8605717.
[7] A. Tajalli, Y. Leblebici, and E.J. Brauer, “Implementing ultra-high-value floating tunable
CMOS resistors,” Electron. Lett., 44, , pp. 349–350 2008
[8] Enz, C. and Vittoz, E., “Charge-Based MOS Transistor Modeling: The EKV Model for
Low-Power and RF IC Design” (Wiley, New York, 2006)
[9] C. Sauer, M. Stanacevic, G. Cauwenberghs, N. Thakor, “Power harvesting and telemetry
in CMOS for implanted devices,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no.
73
12, pp. 2605–2613, Dec. 2005.
[10] B. Gosselin, M. Sawan, C. A. Chapman, “A low-power integrated bioamplifier with active
low-frequency suppression,” IEEE Trans. Biomed., vol. 1, no. 3, pp. 184–192, Jun. 2007.
[11] P. Mohseni and K. Najafi, “A fully integrated neural recording amplifier with DC input
stabilization,” IEEE Trans. Biomed. Eng., vol. 51, no. 5, pp. 832–837, May 2004.
[12] H. Alzaher and M. Ismail, “A CMOS fully balanced differential difference amplifier and
its application,” IEEE Trans. Circuits Syst. II, vol. 48, no. 6, pp. 614–620, June 2001.
[13] J. Zhang, H. Zhang, Q. Sun and R. Zhang, “A Low-Noise, Low-Power Amplifier With
Current-Reused OTA for ECG Recordings, ” in IEEE Transactions on Biomedical Circuits
and Systems, vol. 12, no. 3.
[14] S. Song et al., “A low-voltage chopper-stabilized amplifier for fetal ECG monitoring with
a 1.41 power efficiency factor,” IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 2, pp. 237–
247, Apr. 2015.
[15] L. Yan et al., “A 680 nA ECG acquisition IC for leadless pacemaker applications,” IEEE
Trans. Biomed. Circuits Syst., vol. 8, no. 6, pp., Dec. 2014.
[16] C.-H. Chang et al., “An analog front-end chip with self-calibrated input
impedance for monitoring of biosignals via dry electrode-skin interfaces,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 64, no. 10, pp. 2666–2678, Oct. 2017.
[17] J. Xu, et al., “A 0.6 V 3.8 μW ECG/Bio-Impedance Monitoring IC for Disposable Health
Patch in 40nm CMOS,” CICC, 4 pages, 2018.
[18] N. R. Jangam and S. Ajmera, “Design and Implementation of Ultra low power CMOS
based Operational Transconductance Amplifier (OTA) for Biomedical
Applications,” 2021 2nd International Conference for Emerging Technology (INCET),
2021, pp. 1-4, doi: 10.1109/INCET51464.2021.9456426.
74
[19] S. Schmickl, T. Schumacher, P. Fath, T. Faseth and H. Pretl, “A 350-nW Low-Noise
Amplifier With Reduced Flicker-Noise for Bio-Signal Acquisition,” 2020 Austrochip
Workshop on Microelectronics (Austrochip), 2020, pp. 9-12, doi:
10.1109/Austrochip51129.2020.9232981.
[20] W. Yang, H. Jiang, Y. Yin and Z. Wang, “A 4-W Analog Front End Achieving 2.4 NEF for
Long-Term ECG Monitoring,” in IEEE Transactions on Biomedical Circuits and Systems,
doi: 10.1109/TBCAS.2021.3084152.
[21] J. M. Rueda-Díaz, E. Bolzan, T. D. Fernandes and M. C. Schneider, “Tunable CMOS
Pseudo-Resistors for Resistances of Hundreds of GΩ,” in IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 69, no. 2, pp. 657-667, Feb. 2022, doi:
10.1109/TCSI.2021.3121214.
指導教授 薛木添(Muh-Tian Shiue) 審核日期 2022-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明