博碩士論文 103281003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:54.89.70.161
姓名 卓冠宇(Kuan-Yu Cho)  查詢紙本館藏   畢業系所 數學系
論文名稱
(Some Properties of Dipolar SLE)
相關論文
★ A Primer on BMO★ Markov Processes And Brownian Motion
★ Convergence rates of harmonic measures and extremal lengths of sets in the upper half plane★ 曼德博集合、朱利亞集合與演算法
★ Mixing Time for Ising Model (On Two Special Graphs: the Line and the Circle)★ 分數積分算子的一種雙線性形式
★ 一維和二維的标准以及條件隨機遊走的性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在這篇論文中,我們研讀了一系列定義在複數平面上的曲線(或這曲線空間的等價類)的測度,包括了溢出測度、布朗氣泡測度、布朗環測度。我們研讀了帶形上的 Loewner 鍊。我們證明了帶有驅動點 0+ 的帶型 SLE?(?) 的共形限制性。當 ? ∈ (0, 8/3] 時,我們得到了大小區域的帶型 SLE? 之間的 Radon-Nikodym 導數的表達式。

本論文的大綱如下:在第 1 章,我們簡要地介紹 SLE 的發展。在第 2 章,我們介紹了一些關於共形變換的性質。我們還介紹了布朗測度和邊界泊松核。我們給出了帶形情況的一些布朗測度的計算。在第 3 章,我們首先介紹(弦) Loewner 微分方程,並給出帶形情形的證明。我們給出了帶形 Loewner 鏈經由共形變換後的一些計算。最後我們介紹 SLE 過程。在第 4 章,我們給了主要結論的證明。
摘要(英) In this thesis, we study a series of measures defined on the space of curves in the complex plane (or the equivalence classes of the curves space), including excursion measures, Boundary bubble measures, and Loop measures. We study the Loewner chain in the strip {? = ? + ?? ∈ ℂ ∶ ? ∈ (0, ?)}. We show the conformal restriction property for the dipolar SLE?(?) with a force point 0+, and we obtain an expression for the Radon-Nikodym derivative of dipolar SLE? in a domain with respect to dipolar SLE? in a subdomain for ? ∈ (0, 8/3].

The outline of this thesis is as follows: In Chapter 1, we briefly introduce the development of SLE. In Chapter 2, we introduce some properties about conformal transformations. We also introduce Brownian measures and the boundary Poisson kernels. Some calculations of Brownian measures for the dipolar case will be given. In Chapter 3, we first introduce the (chordal) Loewner differential equation and give the proofs for the dipolar case, and we show some calculations for the Loewner chain mapped by conformal transformations, and then introduce SLE process. In Chapter 4, we give the proofs of our main results.
關鍵字(中) ★ 帶型 SLE 關鍵字(英)
論文目次 中文摘要v
Abstract vi
List of Figures viii
1 Introduction 1
1.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Conformal Transformation 17
2.1 Harmonic Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Half-Plane Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Strip Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 Brownian Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3 Schramm-Loewner Evolution 62
3.1 Loewner Differential Equation . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.1 Chordal Loewner Equation . . . . . . . . . . . . . . . . . . . . . . 64
3.1.2 Dipolar Loewner Equation . . . . . . . . . . . . . . . . . . . . . . . 68
3.1.3 Loewner Chain Mapped by a Conformal Transformation . . . . . . 74
3.2 Schramm-Loewner Evolution (SLE) . . . . . . . . . . . . . . . . . . . . . . 81
4 Proof of Theorem 86
4.1 The locality property for dipolar SLE6 . . . . . . . . . . . . . . . . . . . . 87
4.2 The Conformal Restriction Property for Dipolar SLE8/3 . . . . . . . . . . . 88
4.3 The Radon-Nikodym Derivative of Dipolar SLE . . . . . . . . . . . . . . . 101
Bibliography 107
參考文獻 Alberts, T. and Duminil-Copin, H. (2010). Bridge decomposition of restriction measures.
Journal of Statistical Physics, 140(3):467–493.
Bak, J. and Newman, D. (2010). Complex Analysis. Undergraduate Texts in Mathematics.
Springer New York.
Bauer, M., Bernard, D., and Houdayer, J. (2005). Dipolar stochastic Loewner evolutions.
Journal of Statistical Mechanics: Theory and Experiment, 2005(03):P03001.
Bauer, M., Bernard, D., and Kennedy, T. (2009). Conditioning Schramm–Loewner evolutions
and loop erased random walks. Journal of mathematical physics, 50(4):043301.
Beffara, V. (2008). The dimension of the SLE curves. The Annals of Probability, 36(4):
1421–1452.
Billingsley, P. (2013). Convergence of Probability Measures. Wiley Series in Probability
and Statistics. Wiley.
Camia, F. and Newman, C. M. (2007). Critical percolation exploration path and SLE6 :
a proof of convergence. Probability theory and related fields, 139(3-4):473–519.
Chelkak, D., Duminil-Copin, H., Hongler, C., Kemppainen, A., and Smirnov, S. (2014).
Convergence of Ising interfaces to Schramm’s SLE curves. Comptes Rendus Mathematique,
352(2):157–161.
Chelkak, D. and Smirnov, S. (2012). Universality in the 2D Ising model and conformal
invariance of fermionic observables. Inventiones mathematicae, 189(3):515–580.
Conway, J. B. (2012). Functions of one complex variable II, volume 159. Springer Science
& Business Media.
de Branges, L. (1985). A proof of the Bieberbach conjecture. Acta Mathematica, 154(1):
137–152.
Dubédat, J. (2005). SLE (?, ?) martingales and duality. The Annals of Probability, 33(1):
223–243.
Field, L. S. and Lawler, G. F. (2013). Reversed radial SLE and the Brownian loop
measure. Journal of Statistical Physics, 150(6):1030–1062.
Han, Y. (2017). Some problems about SLE. PhD thesis, Université d’Orléans.
Hongler, C. and Kytölä, K. (2013). Ising interfaces and free boundary conditions. Journal
of the American Mathematical Society, 26(4):1107–1189.
Izyurov, K. (2015). Smirnov’s observable for free boundary conditions, interfaces and
crossing probabilities. Communications in Mathematical Physics, 337(1):225–252.
Kang, N.-G. and Tak, H.-J. (2013). Conformal field theory of dipolar SLE with the
dirichlet boundary condition. Analysis and Mathematical Physics, 3(4):333–373.
Kemppainen, A. (2010). Stationarity of SLE. Journal of Statistical Physics, 139(1):
108–121.
Kemppainen, A. (2017). Schramm–Loewner Evolution. SpringerBriefs in Mathematical
Physics. Springer International Publishing.
Kesten, H. (1963). On the number of self-avoiding walks. Journal of Mathematical Physics,
4(7):960–969.
Kesten, H. (1964). On the number of self-avoiding walks. II. Journal of Mathematical
Physics, 5(8):1128–1137.
Kytölä, K. (2006). On conformal field theory of SLE(?, ?). Journal of statistical physics,
123(6):1169–1181.
Lawler, G. F. (1996). Hausdorff dimension of cut points for Brownian motion. Electronic
Journal of Probability, 1:1–20.
Lawler, G. F. (2008). Conformally Invariant Processes in the Plane. Mathematical surveys
and monographs. American Mathematical Society.
Lawler, G. F. (2009). Partition functions, loop measure, and versions of SLE. Journal of
Statistical Physics, 134(5):813–837.
Lawler, G. F. (2013). Continuity of radial and two-sided radial SLE at the terminal point.
Contemporary Mathematics, 590:101–124.
Lawler, G. F. (2018). Notes on the bessel process. Lecture notes. Available on the webpage
of the author.
Lawler, G. F., Schramm, O., and Werner, W. (2001). Values of Brownian intersection
exponents, II: Plane exponents. Acta Mathematica, 187(2):275–308.
Lawler, G. F., Schramm, O., and Werner, W. (2003). Conformal restriction: the chordal
case. Journal of the American Mathematical Society, 16(4):917–955.
Lawler, G. F., Schramm, O., and Werner, W. (2004a). Conformal invariance of planar looperased
random walks and uniform spanning trees. The Annals of Probability, 32(1B):
939 – 995.
Lawler, G. F., Schramm, O., and Werner, W. (2004b). On the scaling limit of planar selfavoiding
walk. In Fractal geometry and applications: A jubilee of Benoît Mandelbrot.
Multifractals, probability and statistical mechanics, applications. In part the proceedings
of a special session held during the annual meeting of the American Mathematical Society,
San Diego, CA, USA, January 2002, pages 339–364. Providence, RI: American
Mathematical Society (AMS).
Lawler, G. F. and Werner, W. (2004). The Brownian loop soup. Probability theory and
related fields, 128(4):565–588.
Le Gall, J.-F. (2016). Brownian motion, martingales, and stochastic calculus. Springer.
Lind, J. R. (2005). A sharp condition for the Loewner equation to generate slits. Annales
Academiae Scientiarum Fennicae. Mathematica, 30(1):143–158.
Mandelbrot, B. B. (1982). The fractal geometry of nature, volume 1. WH freeman New
York.
Marshall, D. E. and Rohde, S. (2005). The Loewner Differential Equation and Slit Mappings.
Journal of the American Mathematical Society, 18(4):763–778.
Miller, J. and Sheffield, S. (2016). Imaginary geometry III: reversibility of SLE? for
? ∈ (4, 8). Annals of Mathematics, 184(2):455–486.
Pommerenke, C. (1992). Boundary Behaviour of Conformal Maps. Grundlehren der
mathematischen Wissenschaften. Springer Berlin Heidelberg.
Revuz, D. and Yor, M. (2013). Continuous martingales and Brownian motion, volume
293. Springer Science & Business Media.
Rudin, W. (1987). Real and Complex Analysis. Mathematics series. McGraw-Hill.
Schramm, O. (2000). Scaling limits of loop-erased random walks and uniform spanning
trees. Israel Journal of Mathematics, 118(1):221–288.
Schramm, O. (2001). A percolation formula. Electronic Communications in Probability,
6:115–120.
Schramm, O. (2006). Conformally Invariant Scaling Limits. http://dbwilson.com/schra
mm/memorial/ICM.pdf. (ICM Madrid 2006 plenary lecture).
Schramm, O. and Rohde, S. (2005). Basic properties of SLE. Annals of mathematics,
161(2):883–924.
Schramm, O. and Sheffield, S. (2005). Harmonic explorer and its convergence to SLE4.
The Annals of Probability, 33(6):2127–2148.
Schramm, O. and Sheffield, S. (2009). Contour lines of the two-dimensional discrete
Gaussian free field. Acta mathematica, 202(1):21–137.
Schramm, O. and Wilson, D. B. (2005). SLE coordinate changes. New York J. Math,
11:659–669.
Smirnov, S. (2001). Critical percolation in the plane : I. Conformal invariance and Cardy’s
formula. II. Continuum scaling limit.
Smirnov, S. (2010). Conformal invariance in random cluster models. I. Holmorphic
fermions in the Ising model. Annals of mathematics, pages 1435–1467.
Virág, B. (2003). Brownian beads. Probability theory and related fields, 127(3):367–387.
Werner, W. (2004). Girsanov’s transformation for SLE(?, ?) processes, intersection exponents
and hiding exponents. Annales de la Faculté des sciences de Toulouse : Mathématiques,
Ser. 6, 13(1):121–147.
Wu, H. (2015). Conformal restriction: the radial case. Stochastic Processes and their
Applications, 125(2):552–570.
Zhan, D. (2004). Random Loewner chains in Riemann surfaces. PhD thesis, California
Institute of Technology.
Zhan, D. (2008a). Duality of chordal SLE. Inventiones mathematicae, 174(2):309–353.
Zhan, D. (2008b). Reversibility of Chordal SLE. The Annals of Probability, 36(4):1472–
1494.
Zhan, D. (2008c). The scaling limits of planar LERW in finitely connected domains. The
Annals of Probability, 36(2):467–529.
Zhan, D. (2010). Duality of chordal SLE, II. Annales de l’I.H.P. Probabilités et statistiques,
46(3):740–759.
指導教授 方向 審核日期 2022-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明