類組:化學類 科目:無機化學(1003)

共 8 頁第 1 頁

(即單撰題)

一、單選題(答案請填於答案卡,每題2.5分,答錯倒扣4/5分,倒扣至本大題0分為止,共100分) This is a 4-choice multiple choice test with 40 questions, and there is only one correct answer for each question. Students receive full credit for correct answers (2.5 pts/each), no credit for questions they do not attempt (0 pts/each), and a penalty for questions they answered incorrectly (- 4/5 pts/each). The total score is 100 points.

- 1. Which pair of the molecule and point group is correct?
- (A) CH₂Cl₂, T_d (B) $CHCl_3$, C_{3v} (C) CCl_4 , D_{4d} (D) CCl₂Br₂, C_{2h}
- 2. An Oh XY6 molecule exhibits two T_{1u}, IR active modes. Which statement is true?
- (A) Each T_{1u} mode is triply degenerate, and each gives rise to one absorption in the IR spectrum of XY₆
- (B) Each T_{1u} mode is triply degenerate, and each gives rise to three absorptions in the IR spectrum of XY₆
- (C) Each T_{1u} mode is non-degenerate, and gives rise to one absorption in the IR spectrum of XY₆
- (D) One of the T_{1u} modes is the symmetric stretching mode of XY₆
- 3. Elemental analytical data for a new, monomeric compound X is a requirement of publishing details of the compound in the literature, even when crystallographic and spectroscopic data are available. This is because:
- (A) elemental analysis is a requirement purely for historical reasons
- (B) elemental analysis is the only method of confirming that the compound contains no solvate
- (C) elemental analysis confirms the composition of the bulk sample
- (D) elemental analysis confirms that the compound is a monomer and not a dimer or higher oligomer
- 4. You are trying to find out if a thiocyanate ligand, [NCS], is bonded to a metal ion through the N or S atom. Which technique would be MOST useful to you?
- (A) ¹³C NMR spectroscopy (B) mass spectrometry (C) UV-VIS spectroscopy (D) IR spectroscopy

- 5. Which statement is true about orbitals with t_{2g} symmetry?
- (A) MOs with t_{2g} symmetry are found for molecules belonging to the $T_{\rm d}$ point group
- (B) Each MO in a t_{2g} set of orbitals is centrosymmetric
- (C) A set of t_{2g} MOs consists of two degenerate orbitals
- (D) MOs with t_{2g} symmetry are found for molecules belonging to the C_{2v} point group

類組:化學類 科目:無機化學(1003)

共 8 頁 第 2 頁

6. Which of the following does <u>not</u> contain a C_3 axis?

(A) $POCl_3$ (B) $[NH_4]^+$

- (C) [H₃O]⁺
- (D) ClF₃

7. In order to describe the bonding in some compounds, it is necessary to invoke 3-centre 2-electron interactions. In which one of the following are such interactions usually invoked?

- (A) $(BeH_2)_n$ (B) Al_2Cl_6 (C) $(BeCl_2)_n$
- (D) Si₂H

8. A unit cell of ReO3 consists of a cubic arrangement of Re atoms with O atoms centered along each edge of the cube. The coordination number of each Re atom is:

(A) 6

- (B) 3 (C) 8
- (D) 2

9. Which statement is **incorrect**?

- (A) CaO crystallizes with the CsCl structure
- (B) Wurtzite and zinc blende are polymorphs of ZnS
- (C) β-Cristobalite is one crystalline form of SiO₂
- (D) CaTiO₃ (perovskite) is an example of a double oxide

10. Within the principle of hard and soft acids and bases (HSAB), which pair of metal ion and donor atom is **BEST** matched?

(A) AI^{3+} and O (B) Ag^{+} and O (C) Li^{+} and S (D) Ca^{2+} and S

11. When [EDTA]⁴⁻ coordinates to a metal ion, M²⁺, to give [M(EDTA)]²⁻, the number of chelate rings formed is:

- (A) 4 (B) 5 (C) 6
 - - (D) 3

12. A potential (Latimer) diagram shows the following data:

 $Fe^{3+} \rightarrow Fe^{2+} E^{0} = +0.77 V$

 $Fe^{3+} \rightarrow Fe$ $E^{o} = -0.04 \text{ V}$

 $Fe^{2+} \rightarrow Fe \quad E^o = x V$

What is the value of x?

- (A) -0.44 (B) -0.81 (C) -0.40 (D) +0.73

主意:背面有試

類組:化學類 科目:無機化學(1003)

共 第 頁第 3 頁

- 13. The p K_a of HNO₂ is 3.37. The pH of a 0.01 mol dm⁻³ aqueous solution of HNO₂ is:
- (A) 5.37 (B) 2.69 (C) 1.69 (D) 0.69
- 14. In neutral aqueous solution, E° for the Mn³⁺/Mn²⁺ couple is +1.54 V. At pH 14, E° for the Mn(OH)₃/Mn(OH)₂ couple is +0.15 V. Which of the following statements is **incorrect**?
- (A) At pH 14, Mn(II) and Mn(III) both precipitate from aqueous solution as hydroxides
- (B) Mn(III) is less stable with respect to reduction to Mn(II) at pH 14 than at pH 7
- (C) The Mn(OH)₃/Mn(OH)₂ couple refers to an equilibrium involving Mn(III) and Mn(II)
- (D) At pH 7, Mn³⁺(aq) is a relatively strong oxidizing agent
- 15. A superacid is a stronger acid than?
- (A) anhydrous HCl (B) anhydrous HClO₄ (C) anhydrous H₂SO₄ (D) anhydrous HNO₃
- 16. Which of the following behaves as a base in liquid HF?
- (A) $HOSO_3F$ (B) BF_3 (C) PF_5 (D) BrF_3
- 17. How many stereoisomeric forms of each of square-planar $[PtCl_2(NH_3)_2]$ and tetrahedral $[NiCl_2(PPh_3)_2]$ are there
- (A) $[PtCl_2(NH_3)_2]$, two; $[NiCl_2(PPh_3)_2]$, two
- (B) [PtCl₂(NH₃)₂], two; [NiCl₂(PPh₃)₂], one
- (C) [PtCl₂(NH₃)₂], one; [NiCl₂(PPh₃)₂], one
- (D) [PtCl₂(PPh₃)₂], one; [NiCl₂(PPh₃)₂], two
- 18. Cis- and trans-isomers of square planar [PtCl₂(PPh₃)₂] can be distinguished by several methods. Which statement is **incorrect**?
- (A) cis-[PtCl₂(PPh₃)₂] has two IR active Pt-Cl stretching modes but trans-[PtCl₂(PPh₃)₂] has only one
- (B) In the ${}^{31}P$ NMR spectrum, the observed $J({}^{31}P^{31}P)$ for trans-PtCl₂(PPh₃)₂ is greater than that for cis-[PtCl₂(PPh₃)₂]
- (C) The value of $J(^{31}P^{195}Pt)$ for cis-[PtCl₂(PPh₃)₂] is greater than that for trans-[PtCl₂(PPh₃)₂]
- (D) X-ray crystallography would definitively distinguish between the isomers

注意:背面有試題

類組:化學類 科目:無機化學(1003)

共 8 頁 第 4 頁

- 19. Which of the following correctly places the metal centres in their order in the spectrochemical series?
- (A) Pd(II) < Ni(II) < Pt(IV)
- (B) Co(III) < Co(II) < Rh(III)
- (C) Pt(IV) < Pd(II) < Ni(II)
- (D) $Mn(II) \le Fe(III) \le Rh(III)$
- 20. Which metal complex ion is expected to be subject to a Jahn-Teller distortion?
- (A) $[Cr(OH_2)_6]^{3+}$
- (B) $[Cr(NH_3)_6]^{2+}$ (C) $[Cr(CN)_6]^{3-}$ (D) $[Cr(bpy)_3]^{2+}$
- 21. Scanning tunnelling microscopy (STM) could be used to reveal what features of a metal surface?
- (A) step-edges and adsorbed species
- (B) elemental composition of the surface
- (C) oxidation states of adsorbed atoms
- (D) oxidation states of bulk and surface metal atoms
- 22. For which of the following might you use a Hoveyda-Grubbs' second generation catalyst?
- (A) alkene metathesis (B) hydroformylation
- (C) alkene hydrogenation (D) ethene epoxidation
- 23. The reactions of [PtCl₄]² with NH₃ (reaction I) and of [PtCl₄]² with [NO₂] followed by NH₃ (reaction II) are ways of preparing:
- (A) I: trans-[PtCl₂(NH₃)₂]; II: trans-[PtCl₂(NH₃)(NO₂)]
- (B) I: cis-[PtCl₂(NH₃)₂]; II: trans-[PtCl₂(NH₃)(NO₂)]
- (C) I: cis-[PtCl₂(NH₃)₂]; II: cis-[PtCl₂(NH₃)(NO₂)]
- (D) I: trans-[PtCl₂(NH₃)₂]; II: cis-[PtCl₂(NH₃)(NO₂)]
- 24. The first step in the Eigen-Wilkins mechanism for ML6 undergoing Y for L substitution is:
- (A) loss of L
- (B) addition of Y
- (C) formation of a weakly bound encounter complex
- (D) formation of a 7-coordinate complex in the rate-determining step

類組:化學類 科目:無機化學(1003)

共 8 頁第5 頁

- 25. Match the structure type to the stated compound. Which pair is **incorrect**?
- (A) CoF₂; rutile structure type
- (B) TiO; rock salt structure type
- (C) ZnS; zinc blende structure type
- (D) FeF2; anti-fluorite structure type
- 26. Which of the following is a π -donor ligand?
- (A) Cl^- (B) NH_3 (C) CO (D) PF_3
- 27. Match the M-M bond orders to the species given. Which pair is incorrect?
- (A) $[Re_2Cl_8]^{2-}$; Re-Re bond order = 4
- (B) $[W_2Cl_9]^{3-}$; W-W bond order = 3
- (C) $[Mo_2Cl_8]^{4-}$; Mo-Mo bond order = 4
- (D) $[Os_2Cl_8]^{2-}$; Os-Os bond order = 4
- 28. Which statement about organoaluminium compounds is incorrect?
- (A) Dimers of AlMe₃ possess delocalized Al-C-Al bonding interactions
- (B) The bonding in Al₂Me₄Cl₂ can be described in terms of a localized scheme
- (C) In Al₂Ph₄(μ -C \equiv CPh)₂, the bridge bonds can be described in a similar way to those in Al₂Me₄(μ -Ph)₂
- (D) Al₂{CH(SiMe₃)₂}₄ contains an Al-Al bond
- 29. Which statement is correct regarding the covalent bond classification (CBC)?
- (A) L is a 2-electron donor, Z is a 1-electron donor and X donates 0 electrons
- (B) L is a 2-electron donor, X is a 1-electron donor and Z donates 0 electrons
- (C) X is a 2-electron donor, Z is a 1-electron donor and L donates 0 electrons
- (D) Z is a 2-electron donor, L is a 1-electron donor and X donates 0 electrons

注意:背面有試題

類組:化學類 科目:無機化學(1003)

共 8 頁第 0 頁

- 30. Which statement is **incorrect** about complexes formed by the lanthanoids?
- (A) Hard donor ligands are favored
- (B) High coordination numbers are often observed
- (C) The 4f atomic orbitals do not play a significant part in metal-ligand bonding
- (D) Aqua ions are typically 6-coordinate
- 31. Band gaps affect semiconducting properties. Which is the correct ordering of band gaps in these III-V semiconductors?
- (A) GaSb < InSb
- (B) GaP > GaAs
- (C) InAs > InP
- (D) GaP < Si
- 32. Which statement correctly describes the function of cytochromes P-450?
- (A) Cytochromes P-450 act as monooxygenases and catalyze the insertion of O into a C-H bond
- (B) Cytochromes P-450 couple to cytochrome c in the mitochondrial electron-transfer chain
- (C) Cytochromes P-450 act as dioxygenases
- (D) Cytochromes P-450 contain high-spin Fe(III); this directly binds O2 and acts as an O2 carrier
- 33. Enantiomers of [Cr(oxalate)₃]³⁻ are:
- (A) related by a rotation axis (B) diastereoisomers
- (C) structural isomers
- (D) stereoisomers
- 34. To compare the electronic absorption spectra of three iron(II) complexes, you want to combine the three spectra in one plot. You should plot:
- (A) extinction coefficient against wavelength
- (B) absorbance against wavelength
- (C) extinction coefficient against concentration
- (D) absorbance against wavenumber
- 35. In an MO diagram for the formation of H2O in which the z axis bisects the H-O-H angle and the molecular is on the xz plane:
- (A) the O $2p_z$ atomic orbital interacts with an in-phase combination of H 1s atomic orbitals
- (B) the O $2p_y$ atomic orbital interacts with an out-of-phase combination of H 1s atomic orbitals
- (C) the O $2p_x$ atomic orbital is non-bonding
- (D) the O 2s atomic orbital is non-bonding

類組:化學類 科目:無機化學(1003)

共 8 頁第7 頁

- 36. Which statement is **incorrect** about a cubic close-packed lattice?
- (A) All atoms have a coordination number of 12
- (B) The lattice contains both tetrahedral and octahedral holes
- (C) Layers of close-packed atoms are stacked in an ABABAB... pattern
- (D) The packing is more efficient than in a body-centred cubic lattice
- 37. For the cell: $2Ag^{+}(aq) + Zn(s) \rightarrow 2Ag(s) + Zn^{2+}(aq)$ $E^{\circ}_{cell} = 1.56 \text{ V}$

The value of ΔG^{o} is:

- (A) -150 kJ per mole of Zn
- (B) –602 kJ per mole of Ag
- (C) –301 kJ per mole of Ag
- (D) -301 kJ per mole of Zn
- 38. Comparing H₂O and NH₃ as solvents leads to analogies between which pair of species?
- (A) NH₃ and [OH]
- (B) $[NH_2]^-$ and H_2O (C) $[NH_2]^-$ and $[OH]^-$ (D) $[NH_4]^+$ and H_2O
- 39. Match the compound formula to its application as a catalyst or catalyst precursor in the stated process.

Which pair is **incorrect**?

- (A) cis-[Rh(CO)₂I₂]⁻; Monsanto acetic acid synthesis
- (B) RhCl(PPh₃)₃; alkene hydrogenation
- (C) HRh(PPh₃)₃; asymmetric hydrogenation
- (D) HCo(CO)₄; hydroformylation of alkenes
- 40. The usual form of the experimental rate law for substitution in square planar Pt(II) complexes contains two terms:

Rate = $k_1[PtL_3X] + k_2[PtL_3X][Y]$

where PtL₃X is the starting complex and Y is the entering group. The reason for the two-term law is that:

- (A) there are competitive associative and dissociative pathways
- (B) there are two competing dissociative pathways
- (C) the solvent enters in the rate-determining step, and then two competing fast steps follow
- (D) the solvent competes with Y in the rate-determining step

類組:化學類 科目:無機化學(1003)

共义 頁第《頁

ABBREVIATIONS AND SYMBOLS											
amount of substance	n	Faraday constant	\overline{F}	molar mass	M						
ampere	Α	free energy	G	mole	mol						
atmosphere	atm	frequency	ν	Planck's constant	h						
atomic mass unit	u	gas constant	R	pressure	P						
Avogadro constant	N_{A}	gram	g	rate constant	k						
Celsius temperature	°C	hour	ĥ	reaction quotient	Q						
centi- prefix	c	joule	J	second	S						
coulomb	C	kelvin	K	speed of light	С						
density	d	kilo- prefix	k	temperature, K	T						
electromotive force	E	liter	L	time	t						
energy of activation	$E_{\rm a}$	measure of pressure r	nm Hg	vapor pressure VI							
enthalpy	H	milli prefix	m	volt	V						
entropy	\mathcal{S}	molal	m	volume	V						
equilibrium constant	K	molar	M								

EQUATIONS
$$E = E^{\circ} - \frac{RT}{nF} \ln Q \qquad \qquad \ln K = \left(\frac{-\Delta H^{\circ}}{R}\right) \left(\frac{1}{T}\right) + \text{constant} \qquad \qquad \ln \left(\frac{k_2}{k_1}\right) = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

1	PERIODIC TABLE OF THE ELEMENTS														18		
1A																	8A
1	7																2
H	2											13	14	15	16	17	He
1,008	2A											3A	4A	5A	6A	7A	4.003
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
6.941	9.012	ļ										10.81	12,01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	CI	Ar
22.99	24.31	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	26.98	28.09	30.97	32.07	35.45	39,95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50,94	52.00	54.94	55.85	58.93	58.69	63,55	65.39	69.72	72,61	74.92	78.97	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85,47	87.62	88.91	91.22	92.91	95,95	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183,8	186.2	190.2	192,2	195.1	197.0	200,6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(281)	(272)	(285)	(286)	(289)	(289)	(293)	(294)	(294)
						1					,			,		····	1
			58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			140.1	140.9	144.2	(145)	150,4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0	4
			90	91	92	93	94	95	96	97	98	99	100	101	102	103	
			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
			232,0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	_