博碩士論文 105382001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.145.81.139
姓名 徐雅涵(Ya-Han Hsu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 地質不確定性對離岸風機單樁基礎設計之影響
(Influence of Geological Uncertainty on Monopile Foundation Design of Offshore Wind Turbines)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-2-1以後開放)
摘要(中) 離岸風機的成本受環境載重與地質條件的影響甚大,而外海地質調查困難且成本高 昂,很難有完整充分的地質與地工資訊,因此地質不確定性對離岸風機基礎的建造成本 有顯著的影響,凸顯地質不確定性對離岸風機基礎設計影響研究的重要性。本研究以彰 濱離岸風場可行性階段的少數探查孔為依據,使用馬可夫隨機場產製風場之人工地層模 型,以總熵量化地層模型的不確定性。進而探討給定不同數量探查孔資料所產製人工模 型的精確度。結果顯示對於本研究案例風場之簡單地層分布,規劃 9 個均布探查孔,即 可得較為精確的地層模型。應用上述人工地層模型,探討地質不確定性對於特定位置上 離岸風機單樁基礎垂直承載力之影響,亦發現使用 9 個均布探查孔所得到的設計樁長與 實際地層設計樁長幾乎相同。將上述結果結合蒙地卡羅模擬法可清楚分別或整體量化地 層與地工參數不確定性對單樁基礎垂直承載力破壞機率之影響。本研究採用類似的方法, 亦可瞭解離岸風機單樁基礎設計主頻於地質模型不確定性下之分布範圍。上述結果可作 為離岸風機基礎性能設計參考之用。
因離岸風機支撐結構系統之主頻為服務性能狀態之重要檢核項目,本研究為地質不 確定性對主頻之影響程度,首先進行地工參數與結構參數對離岸風機單樁基礎主頻之敏 感度分析,以掌握各種參數對主頻之影響程度,並探討各種簡易評估法與有限元素法分 析結果之差異。研究結果顯示對於結構參數,其影響程度由大至小之排列為:塔高、塔 柱及單樁之樁徑、集中質量、樁長、壁厚。對於地工參數,剪力波速為最主要之影響因子,相對密度影響輕微。在本研究使用之 4 MW 與 6 MW 案例風機時,使系統主頻達穩 定值之單樁基礎臨界長徑比之範圍約在 1.5〜1.7 之間,顯示海床下 2 倍樁徑內淺層土壤 之剪力波速對主頻影響遠較深層土壤為大,因此淺層土壤剪力波速之調查精度相當重要。 本研究建議之等值樁頭勁度法與等值懸臂梁法,都可大量簡化樁土互制作用之數值分析工作,並在計算系統主頻上具有足夠的精度(最大誤差在 2%以內),建議可應用於工程實務。
最後,本研究以一個實際風場的探查資料,研究不同方式所建置之波速剖面與不同 調查孔地層的差異來分別探討地工參數不確定性與地質模型不確定性對風機系統主頻 的影響。主頻的評估方法採用精確的有限元素分布彈簧法,分析軟體採用 SAP2000。結 果顯示以各鑽孔位置之 PS Logging 與其回歸模型之波速剖面所計算主頻明顯較 CPT- based 與其回歸模型之波速剖面所計算之主頻為高;而以各風機位置之 CPT-based 的波 速剖面較能反應地質不確定性對各風機位置主頻之影響。
摘要(英) The cost of offshore wind turbines is greatly affected by the environmental load and geological conditions, and offshore geological surveys are difficult and costly. Thus it is difficult to have complete and sufficient geological and geotechnical information. Therefore, geological uncertainty has a significant impact on the construction cost of offshore wind turbine foundations. This highlights the importance of research on the influence of geological uncertainty on the foundation design of offshore wind turbines. This study is based on a small number of exploration holes in the feasibility stage of the Changbin offshore wind farm. The geological uncertainty is quantified by the total entropy of the artificial geological model of the wind farm produced by the Markov random field. Furthermore, the accuracy of the artificial model produced by given different numbers of exploration hole data is discussed. The results show that for a simple stratum distribution, an accurate stratum model can be obtained by planning 9 evenly distributed exploration holes. Using the artificial stratum model above, the influence of geological uncertainty on the vertical bearing capacity of the monopile foundation of offshore wind turbines at a specific location is investigated. It is also found that the design pile length obtained by using 9 uniformly distributed exploration holes is almost the same as the design pile length of the actual stratum. Combining the above results with the Monte Carlo simulation method can clearly quantify the influence of stratum and geotechnical parameter uncertainty on the failure probability of the vertical bearing capacity of monopile foundation separately or as a whole. Using a similar method, this study can also quantify the failure probability of the design natural frequency of the monopile foundation of offshore wind turbines.
Since the natural frequency of the support structure of offshore wind turbine is an important inspection item for the serviceability limit state, this study focuses on the influence of geological uncertainty on the natural frequency. First, the sensitivity analysis of the geological and structural parameters to the natural frequency is carried out in order to grasp the degree of influence of various parameters on the natural frequency, and the differences between the evaluated results of various simplified methods and finite element method are also investigated. The research results show that for the structural parameters, the order of influence from large to small is: tower height, diameter of tower column and monopile, concentrated mass, pile length and wall thickness, and for geotechnical parameters, the shear wave velocity is the most important factor, and the relative density has a slight influence. The critical length-to- diameter ratio of the monopile foundation that stabilizes the natural frequency of the system is in the range of 1.5 to 1.7, which reveals that the shear wave velocity of the shallow soil within 2 times the pile diameter under the seabed has a greater influence on the natural frequency than the deep soil, so the survey accuracy of soil shear wave velocity in the shallow soil is very important. The equivalent pile head stiffness method and the equivalent cantilever beam method proposed in this study can greatly simplify the numerical analysis of pile-soil interaction, and have sufficient accuracy (the maximum error is within 2%). It is recommended to be applied to engineering practice.
Finally, this study uses the exploration data of an actual wind farm to study the influence of wave velocity profiles constructed in different ways (geotechnical uncertainty) and strata differences in different hole (stratum uncertainty) on the natural frequency of the wind turbine system. The accurate distributed spring method by finite element is used to evaluate the natural frequency and the analysis software uses SAP2000. The results show that the natural frequency calculated by the wave velocity profile of PS Logging and its regression model at each drilling position is significantly higher than that calculated by the wave velocity profile of CPT-based and its regression model. The CPT-based wave velocity profile of each wind turbine location can better reflect the influence of geological uncertainty on the natural frequency of each wind turbine location.
關鍵字(中) ★ 離岸風機
★ 主頻
★ 馬可夫隨機場
★ 地質不確定性
★ 單樁基礎
關鍵字(英)
論文目次 摘要 ........................................................................................................................ i
ABSTRACT ........................................................................................................iii
誌謝 ..................................................................................................................... vii
目錄 ...................................................................................................................... ix
圖目錄 ................................................................................................................ xiii
表目錄 ................................................................................................................ xxi
第一章 緒論 ....................................................................................................... 1
1.1 研究動機與目的.....................................................................................1
1.2 研究架構與流程.....................................................................................3
1.3 論文內容.................................................................................................5
第二章 文獻回顧 ............................................................................................... 7
2.1 離岸風機基礎規範與設計考量.............................................................7
2.2 離岸風機單樁基礎垂直承載力評估方法...........................................12
2.2.1 單樁垂直承載力評估方法.........................................................12
2.2.2 API 靜力學法 ............................................................................... 15
2.3 風機主頻評估法與檢核.......................................................................18
2.3.1 海床固定端懸臂梁法.................................................................20
2.3.2 底部集中彈簧法.........................................................................23
2.3.3 分布彈簧法.................................................................................26
2.3.4 實體有限元素法.........................................................................28
2.3.5 風機主頻之檢核.........................................................................29
2.4 地質模型不確定性 ................................................................................ 31
2.4.1 以馬可夫隨機場建立隨機地質模型(Stochastic geological model) .................................................................................................... 32
2.4.2 馬可夫隨機場在大地工程之應用.............................................37
第三章 地質模型不確定性對單樁風機基礎垂直承載力之影響..................43
3.1 風場背景與調查資料...........................................................................43
3.1.1 風場背景介紹.............................................................................43
3.1.2 CPT 探查孔分析與土壤分類...................................................... 43
3.2 以馬可夫隨機場建立合成地質模型 ................................................... 46
3.3 地質模型不確定性之量化...................................................................48
3.4 由合成地質模型探討探查孔數對地質模型不確定性的影響...........49
3.5 分析位置與其地質不確定性...............................................................51
3.6 離岸風機單樁基礎垂直承載力檢核 ................................................... 52
3.7 地質模型不確定性對離岸風機單樁基礎設計之影響.......................57
3.7.1 地層排序對設計之影響.............................................................57
3.7.2 地層厚度變異性對設計之影響.................................................57
3.8 以機率法考量地質不確定性之影響 ................................................... 59
3.8.1 單獨考量地層厚度之變異性(以P-I-1為例).......................59
3.8.2 單獨考量地工參數之變異性(以P-I-1為例).......................61
3.8.3 考量地層厚度及強度參數之變異性(以P-I-1為例)................62
3.8.4 地質不確定性影響之機率分析(以P-I-3為例)........................64
3.9 小結.......................................................................................................69
第四章 單樁風機主頻參數感度分析與簡易評估法......................................71
4.1 風機結構主頻之估算方法 .................................................................... 71
4.2 風機系統主頻之參數敏感度分析....................................................... 79
4.2.1 土層密度與剪力波速之影響 ...................................................... 80
4.2.2 風機結構參數之影響 .................................................................. 83
4.3 風機系統主頻之基樁臨界深度............................................................92
4.4 風機結構系統主頻簡易評估法..........................................................100
第五章 地質模型不確定性對風機系統主頻之影響....................................115
5.1 簡化地層模型不確定性對風機系統主頻之影響.............................. 115
5.2 實際風場地質不確定對風機系統主頻之影響.................................126
5.2.1 以CPT資料建立風場剪力波速隨深度變化之回歸模型.....127
5.2.2 以CPT-based 波速經驗公式計算各風機位置主頻之差異..130
5.2.3 以回歸模型波速公式計算各風機位置主頻之差異...............132
5.2.4 考量回歸模型剪力波速變異性計算各風機位置主頻之差異 ..................................... 133
5.2.5 以PS-Logging剪力波速剖面計算各風機位置主頻之差異.140
5.2.6 小結...........................................................................................146
結論與建議 ....................................................................................... 149
6.1 結論 ...................................................................................................... 149
6.2 建議 ...................................................................................................... 150
參考文獻 ........................................................................................................... 151
參考文獻 1. Adhikari, S., and Bhattacharya, S. “Vibrations of wind-turbines considering soil-structure interaction,” Wind and Structures, Vol. 14(2), 85 (2011).
2. Arany, L., Bhattacharya, S., Adhikari, S., Hogan, S.J., and Macdonald, J.H.G., “An analytical model to predict the natural frequency of offshore wind turbines on three-spring flexible foundations using two different beam models,” Soil Dynamics and Earthquake Engineering, Vol. 74, 40-45 (2015).
3. Arany, L., Bhattacharya, S., Macdonald, J. H., and Hogan, S. J., “Closed form solution of Eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI,” Soil Dynamics and Earthquake Engineering, Vol. 83, 18-32 (2016).
4. API, “API RP 2A-WSD: Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-working Stress Design, 21st edition,” API Publishing Services, Washington (2000).
5. API, “Recommended practice for planning, designing and constructing fixed offshore platforms—working stress design,” American Petroleum Institute, RP 2A-WSD, Washington, D.C. (2005).
6. Arany, L., Bhattacharya, S., Macdonald, J., and Hogan, S.J. “Design of monopiles for offshore wind turbines in 10 steps,” Soil Dynamics and Earthquake Engineering, Vol. 92, 126-152 (2017).
7. Bhattacharya, S., Cox, J.A., Lombardi, D., and Muir Wood, D. “Dynamics of offshore wind turbines supported on two foundations,” Proc. ICE - Geotech. Eng. 166, 159–169 (2013b).
8. Bhattacharya, S., Nikitas, N., Garnsey, J., Alexander, N.A., Cox, J., Lombardi, D., Muir Wood, D., and Nash, D.F.T. “Observed dynamic soil-structure interaction in scale testing of offshore wind turbine foundations,” Soil Dynamics and Earthquake Engineering, Vol. 54, 47–60 (2013a).
9. Bisoi, S., and Haldar, S., “Dynamic analysis of offshore wind turbine in clay considering soil–monopile–tower interaction,” Soil Dynamics and Earthquake Engineering, Vol. 63, 19-35 (2014).
10. Blevins, W. Building fluency: Lessons and strategies for reading success. Scholastic Inc. (2001).
11. Campbell, W. Protection of Steam Turbine Disk Wheels from Axial Vibration. General electric Company, Transactions of the ASME: 31–160. (1924).
12. Cao, Z. and Wang, Y. “Bayesian model comparison and characterization of undrained shear strength,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 140(6), 04014018 (2014).
13. Cao, Z., Wang, Y., and Li, D. “Quantification of prior knowledge in geotechnical site characterization,” Engineering Geology, Vol. 203, 107-116 (2016).
14. Carle, S.F., Use of a transition probability/Markov approach to improve geostatistical simulation of facies architecture. In American association of petroleum geologists (AAPG). In: Hedberg symposium: applied reservoir characterization using geostatistics, The Woodlands, TX (pp. 3-6) (2000).
15. Chang, Y.L. "Lateral pile loading tests," ASCE, Vol. 02, 272-278 (1937).
16. Ching, J., and Wang, J. S. “Application of the transitional Markov chain Monte Carlo algorithm to probabilistic site characterization,” Engineering Geology, Vol. 203, 151-167 (2016).
17. Clausen, C.J.F., Aas, P.M., and Karlsrud, K. “Bearing capacity of driven piles in sand, the NGI approach,” Proceeding of InternationalSymposium on Frontiers in Offshore Geotechnics (ISFOG), Perth, 574-580 (2005).
18. Clough, R.W., and Penzien, J. Dynamics of structures. McGraw-Hill (1975).
19. CNS 15176-3, “Wind turbines − Part 3: Design requirements for offshore wind turbines,” Chinese National Standards (2019).
20. Cook, M., Barwise, A., Cleverly, W., Hobbs, R., Hodgson, T., James, L., Jenner, C., Morgan, N., Wood, A.M., Orren, R., Osborne, J., Rowland, R., and Wark, C. Guidance notes for the planning and execution of geophysical and geotechnical ground investigations for off shore renewable energy developments. Society for Underwater Technology, London (2014).
21. De Marsily, G., Delay, F., Gonçalvès, J., Renard, P., Teles, V., and Violette, S. “Dealing with spatial heterogeneity,” Hydrogeology Journal, Vol. 13(1), 161-183 (2005).
22. DNVGL-ST-0126, “Design of Offshore Wind Turbine Structures,” Det Norske Veritas (DNV) (2013).
23. DNVGL-ST-0126, “Design of Offshore Wind Turbine Structures,” Det Norske Veritas (DNV) (2018).
24. DNVGL-ST-0437, “Loads and site conditions for wind turbines,” Det Norske Veritas (DNV) (2016).
25. DNVGL-RP- 0585, “Seismic design for wind power plants,” Det Norske Veritas (DNV) (2021).
26. DNVGL-RP-C212, “Offshore soil mechanics and geotechnical engineering,” Det Norske Veritas (DNV) (2017).
27. Elkateb, T., Chalaturnyk, R., and Robertson, P. K. “An overview of soil heterogeneity: quantification and implications on geotechnical field problems,” Canadian Geotechnical Journal, Vol. 40(1), 1-15 (2003).
28. Evans, S.G., “Landslides and surficial deposits in urban areas of British Columbia: a review,” Canadian Geotechnical Journal, Vol. 19(3), 269-288 (1982).
29. Fenton, G.A. “Estimation for stochastic soil models,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125(6), 470 (1999).
30. Fugro, “Axial pile capacity design method for offshore driven piles in sand,” Report P-1003, ssue 3 (2004).
31. Gong, W., Luo, Z., Juang, C.H., Huang, H., Zhang, J., and Wang, L. “Optimization of site exploration program for improved prediction of tunneling-induced ground settlement in clays,” Computers and Geotechnics, Vol. 56, 69-79 (2014).
32. Gong, W., Tang, H., Wang, H., Wang, X., and Juang, C.H. “Probabilistic analysis and design of stabilizing piles in slope considering stratigraphic uncertainty,” Engineering Geology, Vol. 259, 105162 (2019).
33. Gong, W., Zhao, C., Juang, C.H., Tang, H., Wang, H., and Hu, X. “Stratigraphic uncertainty modelling with random field approach,” Computers and Geotechnics, Vol. 125, 103681 (2020).
34. Hansen, L., Eilertsen, R., Solberg, I. L., and Rokoengen, K. “Stratigraphic evaluation of a Holocene clay-slide in Northern Norway,” Landslides, Vol. 4(3), 233-244 (2007).
35. Hsu, Y. H., Lu, Y. C., Khoshnevisan, S., Juang, H., and Hwang, J. H. “Influence of geological uncertainty on the design of OWTF monopiles”. Engineering Geology, Vol. 303, 106621 (2022).
36. Huang, J., Kelly, R., Li, L., Cassidy, M., and Sloan, S.W. “Use of Bayesian statistics with the observational method,” Australian Geomechanics, Vol 49(4), 191-198 (2014).
37. IEC 61400-3, “Wind Turbines – Part 3: Design Requirements for Offshore Wind Turbines,” International Electrotechnical Commission (2009).
38. ISO 19901-4:2016, “Petroleum and natural gas industries — Specific requirements for offshore structures — Part 4: Geotechnical and foundation design considerations,” International Organization for Standardization (2016).
39. Jalbi, S., and Bhattacharya, S. “A Comparison between Advanced and Simplified Methods to Predict the Natural Frequency of Offshore Wind Turbines Incorporating Soil-Structure Interaction,” Conference paper, In: Goseberg, Nils; Schlurmann, Torsten (Hg.): Coastal Structures 2019. Karlsruhe: Bundesanstalt für Wasserbau. S. 904-912 (2019).
40. Jardine, R.J., Chow, F.C., Overy, R., and Standing, J. ICP design methods for driven piles in sands and clays. Thomas Telford, London (2005).
41. Juang, C.H., Zhang, J., Shen, M., and Hu, J. “Probabilistic methods for unified treatment of geotechnical and geological uncertainties in a geotechnical analysis,” Engineering Geology, Vol. 249, pp. 148-161 (2019a).
42. Juang, C.H., Ge, Y., and Zhang, J. “Geological Uncertainty: A Missing Element in Geotechnical Reliability Analysis,” Proceedings of the 7th International Symposium on Geotechnical Safety and Risk (ISGSR), 11-13 Dec. 2019, Taipei, Taiwan (2019b).
43. Keaton, J.R. “A suggested geologic model complexity rating system,” Engineering Geology for Society and Territory, Vol. 6, 363-366 (2015).
44. Kolk, H.J., Baaijens, A.E. and Senders, M. “Design criteria for pipe piles in silica sands,” Proceedings of International Symposium on Frontiers in Offshore Geotechnics(ISFOG), Perth, 711-716 (2005).
45. Lehane, B.M., Li, Y., and Williams, R. “Shaft capacity of displacement piles in clay using the cone penetration test,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, 253-266 (2013).
46. Lehane, B.M., Schneider, J.A., and Xu, X. “A Review of design methods for offshore driven piles in siliceous sand,” UWA Report, GEO: 05358 (2005).
47. Lesny, K., Sturm, H., Carroll, R., and Kidane, M. Standard ground investigations. Bundesamt für Seeschifffahrt und Hydrographie, Hamburg and Rostock (2014).
48. Li, K.S. and Lumb, P. “Probabilistic design of slopes,” Canadian geotechnical journal, Vol. 24(4), 520-535 (1987).
49. Li, Z., Wang, X., Wang, H., and Liang, R.Y. “Quantifying stratigraphic uncertainties by stochastic simulation techniques based on Markov random field,” Engineering geology, Vol. 201, 106-122 (2016).
50. Lombardi, D., Bhattacharya, S., and Muir Wood, D. “Dynamic soil-structure interaction of monopile supported wind turbines in cohesive soil,” Soil Dynamics and Earthquake Engineering, Vol. 49, 165–180 (2013).
51. Matlock, H. “Correlation for design of laterally loaded piles in soft clay,” Offshore technology conference, OnePetro (1970).
52. Norberg, T., Rosén, L., Baran, A., and Baran, S. “On modelling discrete geological structures as Markov random fields,” Mathematical Geology, Vol. 34(1), 63-77 (2002).
53. Ortiz, J.M., and Deutsch, C.V. “Indicator simulation accounting for multiple-point statistics,” Mathematical Geology, Vol. 36(5), 545-565 (2004).
54. Phoon, K.K. and Kulhawy, F.H. “Characterization of geotechnical variability,” Canadian Geotech Journal. Vol. 36 (4), 612–624 (1999).
55. Reese, L.C. and Van Impe, W. F. Single piles and pile groups under lateral loading. CRC press. (2000).
56. Robertson, P.K. and Cabal, K.L. Guide to cone penetration test. Gregg Drilling & Testing, Inc. (2015).
57. Rong, X.N., Xu, R.Q., Wang, H.Y., and Feng, S.Y. “Analytical solution for natural frequency of monopile supported wind turbine towers,” Wind and Structures, Vol. 25(5),
459–474 (2017).
58. Simpson, B. “Reliability in geotechnical design–some fundamentals,” Geotechnical Safety and Risk, ISGSR 2011, 393-400. (2011).
59. Stehly, T., Beiter, P., and Duffy, P. 2019 cost of wind energy review. No. NREL/TP-5000-78471. National Renewable Energy Lab.(NREL), Golden, CO, United States (2020).
60. Tang, W.H., “Updating anomaly statistics—single anomaly case,” Structural safety, Vol. 4(2), 151-163 (1986).
61. Tang, X.S., Li, D.Q., Zhou, C.B., and Phoon, K.K. “Copula-based approaches for evaluating slope reliability under incomplete probability information,” Structural Safety, Vol. 52, 90–99 (2015).
62. van der Tempel, J., & Molenaar, D.P. “Wind turbine structural dynamics–a review of the principles for modern power generation, onshore and offshore,” Wind engineering, Vol. 26(4), 211-222 (2002).
63. Van Dijk, B.F.J. and Kolk, H.J. “CPT-based design method for axial capacity of offshore piles in clays,” Proceedings of frontiers in offshore geotechnics II, 555-560, Taylor and Francis Group, London (2011).
64. Vanmarcke, E.H. “Probabilistic stability analysis of earth slopes,” Engineering Geology, Vol. 16(1-2), 29-50 (1980).
65. Wang, X., Wang, H., and Liang, R. Y. “A method for slope stability analysis considering subsurface stratigraphic uncertainty,” Landslides, Vol. 15(5), 925-936 (2018).
66. Wang, X., Wang, H., Liang, R.Y., Zhu, H., and Di, H. “A hidden Markov random field model based approach for probabilistic site characterization using multiple cone penetration test data,” Structural safety, Vol. 70, 128-138 (2018).
67. Wang, Y. and Zhao, T. “Interpretation of soil property profile from limited measurement data: a compressive sampling perspective,” Canadian Geotechnical Journal, Vol. 53(9), 1547-1559 (2016).
68. Wellmann, J.F., Horowitz, F.G., Schill, E., and Regenauer-Lieb, K. “Towards
incorporating uncertainty of structural data in 3D geological inversion,” Tectonophysics, Vol 490(3-4), 141-151 (2010).
69. Wu, T.H. and Wong, K., “Probabilistic soil exploration: Case history,” Journal of the Geotechnical Engineering Division, Vol. 107(12), 1693-1711 (1981).
70. Ye, M. and Khaleel, R. “A Markov chain model for characterizing medium heterogeneity and sediment layering structure,” Water Resources Research, Vol. 44(9) (2008).
71. JRA,道路橋示方書・同解說: I 共通編-下部構造編,日本道路協会 (2002)。
72. 王俊翔、黃俊鴻,「離岸風機基樁軸向承載力計算方法之比較研究:(II) 海底土層」, 地工技術,第 174 期,第 85-94 頁 (2022)。
73. 台灣電力公司,「離岸風力發電第二期計畫可行性研究」,研究報告,台灣電力公司 (2018)。
74. 黃俊鴻、王俊翔,「離岸風機基樁軸向承載力計算方法之比較研究:(I) 均勻土層」, 地工技術,第 172 期,第 95-106 頁 (2022)。
75. 經濟部標準檢驗局,「台灣離岸風力發電場址調查及設計技術指引」,經濟部標準檢 驗局 (2022)。
指導教授 莊長賢 黃俊鴻 審核日期 2023-2-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明