博碩士論文 109322008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:3.137.200.252
姓名 黃靖軒(Jing-Xuan Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 含變頻滑動支承曲線橋梁之振動台實驗
相關論文
★ 隔震橋梁含防落裝置與阻尼器之非線性動力反應分析研究★ 橋梁碰撞效應研究
★ 應用位移設計法於雙層隔震橋之研究★ 具坡度橋面橋梁碰撞效應研究
★ 橋梁極限破壞分析與耐震性能研究★ 應用多項式摩擦單擺支承之隔震橋梁研究
★ 橋梁含多重防落裝置之極限狀態動力分析★ 強震中橋梁極限破壞三維分析
★ 隔震橋梁之最佳化結構控制★ 跨越斷層橋梁之極限動力分析
★ 塑鉸極限破壞數值模型開發★ 橋梁直接基礎搖擺之極限分析
★ 考量斷層錯動與塑鉸破壞之橋梁極限分析★ Impact response and shear fragmentation of RC buildings during progressive collapse
★ 應用多項式滾動支承之隔震橋梁研究★ Numerical Simulation of Bridges with Inclined
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 多項式摩擦單擺支承(polynomial friction pendulum isolator,PFPI),其曲面為六次方多項式的新式變頻滑動隔震支承,利用回復勁度遞減之軟化段減緩結構加速度反應,亦可藉由回復勁度遞增之硬化段降低結構位移反應,過去研究已證實PFPI應用於等高橋墩與不等高橋墩橋梁中,受近域與遠域震波皆發揮良好的隔震效果。
平面曲線橋梁,在靜載重時內外支承反力有一定之差值,通常在地震力作用時,容易使內支承與外支承反力相差值放大,若地震力太大,可能會使內支承反力降低到零使PFPI的支承產生上下分離的情形,進而產生落橋或是結構物傾倒。本研究針對PFPI隔震曲線橋梁進行設計,假設此橋梁受單向地震力並以不同角度影響橋梁,模擬PFPI之行為。另外為了避免支承超出位移限制,支承有加裝環形擋板,利用支承環形擋板避免支承水平分離避免落橋的情況產生。
本研究採用新隱式非線性結構動力分析方法 (New Implicit Nonlinear Dynamic Finite Element Method , NINDFEM) 建立有限元素分析模型,並與振動台實驗有良好的擬合。並比較不同角度震波的情況下,對曲線橋梁之影響,比較支承位移以及遲滯迴圈結果,給予設計上的建議。
摘要(英) Polynomial friction pendulum isolator (PFPI) , whose curve is six power polynomials , is a new kind of variable frequency pendulum isolator. Using the softening section to reduce the acceleration response of the structure, on the other hand , the hardened section reduces the structural displacement response. Research in past has confirmed that when PFPI are applied on regular and irregular bridge, both the near and far seismic waves exert good isolation effects.
For a plane curved bridge, there is a certain difference between the internal and external support reaction forces under static load. Usually, when the seismic force acts, it is easy to enlarge the difference between the internal support and the external support reaction force. If the seismic force is too large, it may cause the internal support react that the reaction force is reduced to zero, the support of the PFPI will be separated, which will cause the bridge or the structure to fall. In this study, the PFPI seismic isolation curve bridge is designed. It is assumed that the bridge is subjected to seismic forces with different angles to simulate behavior of PFPI support .
In addition, to prevent the support from exceeding the displacement limit, that lead to falling bridge, the support is equipped with an annular baffle. To avoid falling bridge crank plate horizontal separation can be prevented by annular baffle.
In this study, New Implicit Nonlinear Dynamic Finite Element Method (NINDFEM) is used to establish the finite element analysis model, and it fits well with the shaking table experiment results. And compare with the reaction displacement,and hysteresis loop under the waves with different angle conditions., and give design suggestions based on the comparison results.
關鍵字(中) ★ 變頻式隔震支承
★ 曲線橋梁
★ 隱式非線性結構動力分析方法
★ 振動台實驗
★ 角度
關鍵字(英) ★ variable frequency pendulum isolator
★ curved bridge
★ implicit nonlinear dynamic finite element method
★ shaking table experiment
★ angle
論文目次 摘要 I
ABSTRACT II
致謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 3
1.2.1 近遠域震波特性 3
1.2.2 摩擦單擺支承 3
1.2.3 新隱式非線性有限元素動力分析方法(New Implicit Nonlinear Dynamic finite element method , NINDFEM) 5
1.2.4 曲線橋梁隔震研究 5
1.2.5 曲線橋梁隔震實驗研究 6
1.3 研究目的 7
1.4 研究內容 7
第二章 多項式摩擦單擺支承 9
2.1 支承力學行為 10
2.2 瞬時隔震頻率 13
2.3 多項式摩擦單擺支曲面函數與特性 14
第三章 新隱式非耦合有限元素動力分析方法 20
3.1 隱式非耦合運動方程式 21
3.2 隱式直接積分法 24
3.2.1 Newmark直接積分法 24
3.2.2 Bathe複合積分法 25
3.3 空間構架元素 26
3.4 滑動元素 29
3.4.1 黏滯階段 29
3.4.2 滑動階段 31
3.4.3 分離階段 35
3.4.4 摩擦係數之參數分析 36
第四章 橋梁模型振動台實驗 40
4.1 實驗設備與實驗試體 40
4.2 實驗測量儀器及配置 41
4.3 輸入震波 42
第五章 討論與比較 57
5.1 有限元素模型之建立 57
5.1.1 曲線橋梁之有限元素模型建立 57
5.1.2 結構組尼 58
5.1.3 滑動元素 58
5.2 實驗與數值模擬結果比較 58
5.2.1 支承位移歷時與受力歷時 59
5.2.2 支承滑動軌跡 60
5.2.3 支承遲滯迴圈 61
5.2.4 支承軸力與垂直軸方向受力與加速度歷時 62
5.3 小結 62
第六章 結論與建議 183
6.1 結論 183
6.2 建議及未來研究方向 183
參考文獻 184
參考文獻 1. Celebi, M. (1996) “Successful performance of a base-isolated hospital building during the 17 January 1994 Northridge earthquake.” The Structural Design of Tall Buildings, 5(2), 95-109.
2. Asher, J.W. , Hoskere, S.N. , Ewing, R.D. , Mayes, R.L. , Button, M.R. , Van Volkingburg, D.R. , “Performance of Seismically Isolated Structures in the 1994 Northridge and 1995 Kobe Earthquakes. (1997).” Proceedings of Structures Congress XV (ASCE), 1128-1132.
3. Martelli, A. and Forni, M. (1998) “Seismic isolation of civil buildings in Europe.” Progress in Structural Engineering and Materials, 1(3), 286-294.
4. Kelly, J. M. (1998) “Seismic isolation of civil buildings in USA.” Progress in Structural Engineering and Materials, 1(3), 279-285.
5. Fujita, T. (1998) “Seismic isolation of civil buildings in Japan.” Progress in Structural Engineering and Materials, 1(3), 295-300.
6. Bruneau, M., Wilson, J. C. , and Tremblay, R. (1996). “Performance of steel bridges during the 1995 Hyogoken-Nanbu (Kobe, Japan) earthquake.” Canadian Journal of Civil, 23(3), 678-713.
7. Otsuka, H. and et al. (1997). “Report on the Disaster Caused by the 1995 Hyogoken Nanbu Earthquake, Chapter 5, Damage to Highway Bridges.” Journal of Research, Public Works Research Institute, 33.
8. Ghobarah, A. and Ali, H. M. (1988). “Seismic performance of highway bridges.” Engineering Structures, 10(3), 157-166.
9. Lee, G. C. and Loh, C. (1999). “Preliminary report from MCEER-NCREE workshop on the 921 Taiwan earthquake.” Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York.
10. Kawashima, K. (2002). “Damage of bridge resulting from fault rupture in the 1999 KOCAELI and DUZCE, Turkey earthquakes and the 1999 Chi-Chi, Taiwan earthquake.” Structural Engineering/Earthquake engineering, JSCE, 19(2), 179-197.
11. Kosa, K., Tazaki, K. and Yamaguchi, E. (2002). “Mechanism of Damage to Shiwei Bridge Caused by 1999 Chi-Chi Earthquake.” A Workshop on Seismic Fault-induced Failures, 143-154.
12. Naeim, F. and Kelly, J. M. (1999). “Design of Seismic Isolated Structures: From Theory to Practice.”
13. Zheng Liu, Tao Wang, (2011) . “Application of Lead Rubber Bearing in Curved Continuous Bridge.” Advanced Materials Research
14. 盧煉元、鍾立來 (1999),”國內外結構控制技術之進展”
15. Ian G. Buckle and Ronald L. Mayes (1990) “Seismic Isolation History, Application, and Performance—A World View.” Earthquake Spectra
16. R.S. Jangid,(2005). “Optimum friction pendulum system for near-fault motions.” Engineering Structures
17. Pranesh, M. and Sinha, R. (2000). “VFPI: an isolation device for aseismic design.” Earthquake Engineering and Structural Dynamics, 29(5), 603- 627.
18. Pranesh, M. and Sinha, R. (2002). “Earthquake Resistant Design of Structures using the Variable Frequency Pendulum Isolator.” Journal of 157 Structural Engineering, ASCE, 128(7), 870-882.
19. Pranesh, M. and Sinha, R. (2004). “Aseismic design of structure– equipment systems using variable frequency pendulum isolator” Nuclear Engineering and Design, 231(2), 129-139.
20. Pranesh, M., and Sinha, R. (2004). “Behavior of structures isolated using VFPI during bear source ground motions.” The 13th World Conference on Earthquake Engineering, Vancouver, Canada, No. 3105.
21. 王健 (2006) “變曲率滑動隔震防制近斷層震波之實驗與分析”,高雄第一科技大學營建工程系碩士論文。
22. 董佩宜 (2010) “應用多項式摩擦單擺支承之隔震橋梁研究”,國立中 央大學土木系碩士論文。
23. 方嬿甄 (2011) “考量垂直效應之多項式摩擦單擺支承之分析與設計”,國立中央大學土木系碩士論文。
24. 曹哲瑋 (2016) “應用多項式摩擦單擺支承於不等高橋梁之研究”,國立中央大學土木系碩士論文。
25. 陳奕翔 (2021) 含變頻滑動支承及抗拉拔裝置橋梁在水平雙向震波下之振動台實驗
26. Loh, C. S. (1999). “Interpretation of structural damage in 921 Chi-Chiearthquake.” International Workshop on 921 Chi-Chi Earthquake Reconnaissance, Dec. 14-17, Taichung, Taiwan.
27. Hall, J. F., Heaton, T. H., Halling, M. W., and Wald, D. J. (1995). “NearSource Ground Motion and its Effects on Flexible Buildings.” Earthquake Spectra, 11(4), 569-606
28. Makris N. and Chang, S. P. (1998). “Effect of Damping Mechanisms on the Response of Seismically Isolated Structures.” Report No. PEER-98/06, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley. 0
29. Liao, W. I., Loh, C. H. and Wan, S. (2000). “Responses of isolated bridges subjected to near-fault ground motions recorded on Chi-Chi earthquake.” International Workshop on Annual Commemoration of Chi-Chi Earthquake, Sep. 18-20, Taipei, 371-380.
30. 張婉妮 (2001) ,“近斷層震波對滑動隔震結構之影響”,高雄第一科技 大學營建工程系碩士論文。
31. Zayas, V. A., Low, S. S., and Mahin, S. A. (1990). “A simple pendulum technique for achieving seismic isolation.” Earthquake Spectra, 6, 317- 333.
32. Mokha, A. S., Constantinou, M. C., Reinhorn, A. M., and Zayas, V. A. (1991). “Experimental Study of Friction Pendulum Isolation System.” Journal of Structural Engineering, ASCE, 117(4), 1201-1217.
33. Wang, Y. P., Chung, L. L., and Liao, W. H. (1998). “Seismic response analysis of bridges isolated with friction pendulum bearing.” Earthquake Engineering and Structural Dynamics, 27, 1069-1093.
34. 盧煉元、王亮偉、陳慶輝、李官峰、李姿瑩、蔡諄昶 (2016),「以性能為導 向之二階段隔震設計法」,結構工程,Vol. 31 (3), 33-61。
35. Pranesh, M. and Sinha, R. (2000). “VFPI: an isolation device for aseismic design.” Earthquake Engineering and Structural Dynamics, 29(5), 603- 627.
36. Pranesh, M. and Sinha, R. (2002). “Earthquake Resistant Design of Structures using the Variable Frequency Pendulum Isolator.” Journal of 157 Structural Engineering, ASCE, 128(7), 870-882.
37. Pranesh, M. and Sinha, R. (2004). “Aseismic design of structure– equipment systems using variable frequency pendulum isolator” Nuclear Engineering and Design, 231(2), 129-139.
38. Pranesh, M., and Sinha, R. (2004). “Behavior of structures isolated using VFPI during bear source ground motions.” The 13th World Conference on Earthquake Engineering, Vancouver, Canada, No. 3105.
39. 盧煉元、李姿瑩、葉奕麟、張洵(2010),「變頻式搖擺支承於近域隔 震之運用」,中國土木水利工程學刊,第二十二卷第三期,283-298。
40. Lu, L. Y., Shih, M. H. , and Wu, C. Y. (2004). “Near-fault seismic isolation using sliding bearings with variable curvatures.” The 13th World Conference on Earthquake Engineering, Vancouver, Canada, No. 3264.
41. Lu, L. Y., Shih, M. H., and Wu, C. Y. (2006). “Sliding isolation using variable frequency bearings for near fault ground motions.” The 4th International Conference on Earthquake Engineering, Taipei, Taiwan, No. 164.
42. Lu, L. Y., Wang, J., and Yeh, S. W. (2007). “Experimental verification of polynomial friction pendulum isolator for near-fault seismic isolation.” The 4th International Structural Engineering and Construction Conference, Melbourne, Australia, 1065-1071
43. Lu, L. Y., Lee, T. Y., and Yeh, S. W. (2011). “Theory and experimental study for sliding isolators with variable curvature.” Earthquake Engineering and Structural Dynamics, DOI: 10.1002/eqe.1106.
44. Lee, T.Y., Chung, K.J. and Chang, H. (2018), “A new procedure for nonlinear dynamic analysis of structures under seismic loading based on equivalent nodal secant stiffness,” International Journal of Structural Stability and Dynamics, 18(3), 1850043.
45. Lee, T.Y., Chung, K.J. and Chang, H. (2017) “A new implicit dynamic finite element analysis procedure with damping included.” Engineering Structures, 147, 530-544.
46. 鍾昆潤 (2018) ,“非耦合隱式動力有限元素分析及其於結構崩塌分析之應用”,國立中央大學土木系博士論文。
47. Klaus- Jürgen Bathe , Mirza M. Irfan Baig, (2005). “On a composite implicit time integration procedure for nonlinear dynamics “ Computers and Structures
48. Klaus- Jürgen Bathe, (2007). “Conserving energy and momentum in nonlinear dynamics:A simple implicit time integration scheme” Computers and Structures
49. Klaus-Jürgen Bathe,Gunwoo Noh, (2012).“Insight into an implicit time integration scheme for structural dynamics” Computers and Structures
50. Williams, D. and Godden, W. (1979). “Seismic response of long curved bridge: experimental model studies.” Earthquake Engineering and Structural Dynamics, 7(2), 107-128.0
51. Han, Q., Du, X., and Liu, J. et al. (2009) “Seismic damage of highway bridges during the 2008 Wenchuan earthquake. ” Earthq. Eng. Eng. Vib., 8(2), 263–73.0
52. Seo, J. and Linzell, D. G. (2012). “Horizontally curved steel bridge seismic vulnerability assessment.” Engineering Structures, 34(1), 21-32.0
53. Wilson, T., Mahmoud, H. and Chen, S. (2014). “Seismic performance of skewed and curved reinforced concrete bridges in mountainous states.” Engineering Structures, 70(3), 158-167.0
54. Tondini, N., and Stojadinovic, B. (2012). “Probabilistic seismic demand model for curved reinforced concrete bridge.” Bulletin of earthquake engineering, 10(5), 1455-1479.
55. Yan, L., Li, Q., Han, C., and Jiang, H. (2016) “Shaking table tests of curved bridge considering bearing friction sliding isolation.” Shock Vib., 2016, 1-14.
56. Zhi, Z., Xiaojun, L., Riqing, L., and Chenning, S. (2019) “Shaking table tests and numerical simulations of a small radius curved bridge considering SSI effect.” Soil Dynamics and Earthquake Engineering, 118, 1-18.
57. Daniel G. Linzell1and Venkata P. Nadakuditi2, “Parameters influencing seismic response of horizontally curved, steel, I-girder bridges” Steel and Composite Structures, Vol. 11, No. 1 (2011) 21-38
58. 李姿瑩、盧煉元、陳奕翔、洪文孝,「含變頻式摩擦單擺支承與抗拉拔裝置 橋梁之水平雙向振動台實驗」,中華民國力學學會第四十五屆全國力學會議, 民國 110 年 11 月 18-19 日,新北市,台灣,2021
59. Iemura, H., Taghikhany, T. & Jain, S.K. (2007) “Optimum Design of Resilient Sliding Isolation System for Seismic Protection of Equipments,” Bull Earthquake Eng 5, 85–103.
60. Jack W. Baker & Ting Lin & Shrey K. Shahi (2011) New Ground Motion Selection Procedures and Selected Motions for the PEER Transportation Research Program
61. Wang,L. W.,L.Y.Lu(2018)’’Generic 3D formulation for sliding isolations with variable curvature and its experimental verification.” Engineering Structures,177:12-29,December.(SCI,EI)(MOST107-2625-M-006-016)
指導教授 李姿瑩(Tzu-Ying Lee) 審核日期 2023-2-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明