博碩士論文 109322019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.149.238.197
姓名 郭芠圻(Wen-Chi Kuo)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 套筒式鋼筋續接器拉力試驗之有限元素分析
相關論文
★ 隔震橋梁含防落裝置與阻尼器之非線性動力反應分析研究★ 橋梁碰撞效應研究
★ 應用位移設計法於雙層隔震橋之研究★ 具坡度橋面橋梁碰撞效應研究
★ 橋梁極限破壞分析與耐震性能研究★ 應用多項式摩擦單擺支承之隔震橋梁研究
★ 橋梁含多重防落裝置之極限狀態動力分析★ 強震中橋梁極限破壞三維分析
★ 隔震橋梁之最佳化結構控制★ 跨越斷層橋梁之極限動力分析
★ 塑鉸極限破壞數值模型開發★ 橋梁直接基礎搖擺之極限分析
★ 考量斷層錯動與塑鉸破壞之橋梁極限分析★ Impact response and shear fragmentation of RC buildings during progressive collapse
★ 應用多項式滾動支承之隔震橋梁研究★ Numerical Simulation of Bridges with Inclined
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 台灣都市人口密集且用地有限,新建物多朝向高層建築發展,相較於傳統鋼筋混凝土,採用新型高強度鋼筋混凝土之建築油然而生。主要關鍵技術為採用高強度螺紋節鋼筋與其適用之螺紋續接套筒。高強度鋼筋係指降伏強度為550 MPa及690 MPa應力之SD550W以及SD690。雖然我國國家標準局(CNS560)已於107年4月將SD550W及SD690納入鋼筋混凝土用鋼筋,惟目前對於採用此鋼筋之續接器,即灌漿式螺紋續接套筒,其力學行為尚不清楚。
本文將採用ABAQUS有限元素分析軟體對SD690螺紋節鋼筋之灌漿式續接器於軸向拉力下之應力傳遞機制以及破壞形式進行研究,並對照試驗結果以驗證有限元素分析之準確性;接著針對不同長度之續接套筒進行比對,來探討增加套筒環節將會對力量傳遞上有何影響。
摘要(英) With densely-populated and limited land, new buildings are mostly developed towards high-rise buildings in Taiwan. The main technology is the use of high-strength screw-type deformed bars and its suitable coupling sleeve. High-strength steel bars refer to SD550W and SD690 with yield strengths of 550 MPa and 690 MPa stresses. Although SD550W and SD690 have been included as reinforcing bars for reinforced concrete by the National Standards of the Republic of China (CNS560) in April 2018, the mechanical behavior of the grout-filled coupling sleeve, which is used for screw-type deformed bars, is still unknown.
In this paper, ABAQUS finite element analysis software was used to study the mechanism of transferring stress and damage pattern of the grouting sleeve for SD690 screw-type deformed bars under axial tension. In addition, connectors with different lengths were compared to investigate the effect of the different threaded sleeves on the force transfer.
關鍵字(中) ★ 新型高強度鋼筋混凝土構造(New RC)
★ SD690螺紋節鋼筋
★ 灌漿螺紋式續接器
關鍵字(英) ★ NEW RC
★ SD690 screw-type deformed bars
★ grout-filled coupling sleeve
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
符號說明 ix
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究內容 2
第二章 文獻回顧 4
2.1 鋼筋續接器型式 4
2.2 鋼筋機械式續接規範 6
2.3 灌漿螺紋式續接相關文獻 8
2.4 續接器之有限元素分析方法 9
2.4.1 混凝土損傷塑性模型 9
2.4.2 握裹交互作用 11
2.4.3 分析方法 13
第三章 抗拉試驗規劃 23
3.1 灌漿式螺紋續接套筒 23
3.2 續接器試驗結果 23
第四章 ABAQUS有限元素分析一 29
4.1 前處理 29
4.1.1 材料性質(Property) 29
4.1.2 分析步(Step) 30
4.1.3 握裹交互作用(Bonding interaction) 30
4.1.4 荷載(Load) 31
4.1.5 網格(Mesh) 31
4.2 後處理 32
4.3 分析結果 33
4.3.1 應力圖 33
4.3.2 應變圖 33
4.3.3 接觸應力 34
4.3.4 單向拉伸試驗與有限元素分析結果之比對 34
4.4 小結 35
第五章 ABAQUS有限元素分析二 51
5.1 前處理 51
5.2 分析結果 51
5.2.1 應力圖 51
5.2.2 應變圖 52
5.2.3 接觸應力 53
5.2.4 續接器滑動量以及續接處外鋼筋伸長率之比對 53
5.3 小結 54
第六章 結論與建議 63
6.1 結論 63
6.2 建議 64
參考文獻 66
參考文獻 [1]ACI Committee 439, “Types of Mechanical Splices for Reinforcing Bars (ACI439.3R-07),” American Concrete Institute, Farmington Hills, MI, 2007, 24 pp.
[2]東京鐵鋼株式會社,「Neji-Tetsu-Con製品概要及實例介紹」,台灣高強度鋼筋混凝土(Taiwan New RC)結構施工技術與構件耐震性能研討會,國家地震工程研究中心,台北市,2019。
[3]詹耀裕、廖健閔,「談確保裝配式建築豎向結構連接質量的方法及工藝」,中國混凝土,107期,30-37頁,2018。
[4]中華民國國家標準,「CNS560鋼筋混凝土用鋼筋」,經濟部標準檢驗局,2014。
[5]林進祥、詹政書、盧致宏、林韋杉,「新世代螺紋節鋼筋ASTM等國際(外)標準與CNS國家標準差異性研究」,經濟部標準檢驗局新竹分局,2019。
[6]台灣混凝土學會TCI 技術報告,「高強度鋼筋續接器續接性能規範」,2014。
[7]中國土木水利工程學會,「混凝土工程設計規範與解說(土木401-110)」,台北,2011。
[8]中華民國國家標準,「CNS15560鋼筋機械式續接試驗法」,2014。
[9]ACI Committee 318, “Building code requirements for structural concrete (ACI 318-19) and commentary,” American Concrete Institute, Farmington Hills, MI, 2019, 623 pp.
[10]歐昱辰,「我國混凝土結構設計規範之因應」,ACI 318‐19主要變革與我國混凝土結設計規範之因應研討會,國家地震工程研究中心,台北市,2019。
[11]Caltrans, "Standard Specifications," Department of Transportation, California State Transportation Agency, State of California, Sacramento, 2018, 1302 pp.
[12]Caltrans, "California Test 670 - Method of Tests for Mechanical and Welded Reinforcing Steel Splices," Transportation Laboratory, Division of Engineering Services, Department of Transportation, California State Transportation Agency, State of California, Sacramento, 2013, 13 pp.
[13]李宏仁、林克強、張子宥、張子宥,「高強度鋼筋機械式續接性能合格標準及驗證研究」,內政部建築研究所委託研究報告,編號 10915G0012,2020。
[14]李宏仁、陳正誠、陳建中、張家榮,「建築工程鋼筋機械式續接性能基準及驗證研究」,內政部建築研究所研究報告,編號 106301070000G0032, 2017。
[15]公共工程委員會,「施工鋼要規範,第03210章 鋼筋」,V5.0,2018。
[16]日本土木学会, 鉄筋定着・継手指針[2007年版], 日本土木学会, 2007, 41-46 pp。
[17]Kim, Hyong-Kee, “Structural Performance of Steel Pipe Splice for SD500 High-strength Reinforcing Bar under Cyclic Loading,” Architectural research, 2008.
[18]Kuang Z, et al, “Computational and Experimental Mechanical Modelling of a Composite Grouted Splice Sleeve Connector System,” Materials (Basel), 2018.
[19]Liu, Yong, et al, “Numerical Analysis on Tensile Properties of Grout-filled Splice Sleeve Rebars under ISO 834 Standard Fire,” E3S Web of Conferences, 2018.
[20]Bao, Longsheng, “Finite element Analysis of Semi-Grouting Sleeve Connection Member Based on ABAQUS,” IOP Conference Series: Earth and Environmental Science, 2018.
[21]Cheng Yang, et al, “Effective stress-strain relationship for grouted sleeve connection: Modeling and experimental verification,” Engineering Structures, Vol 210, 2020.
[22]Tao Chen, et al, “Numerical modeling and parametric analysis of grouted connections under axial loading,” Thin-Walled Structures, Vol 154, 2020.
[23]Guanyu Zheng, “Mechanical performance for defective and repaired grouted sleeve connections under uniaxial and cyclic loadings,” Construction and Building Materials, Vol 233, 2020.
[24]Espoir Kulondwa Kahama, “numerical study on the influence of defects in grouting on the mechanical properties of a full grouted sleeve connector,” The Journal of Adhesion, 2022.
[25]ABAQUS Inc., “ABAQUS Theory Guide,” Version 6.12, 2012.
[26]Wahalathantri, et al, “A Material Model for Flexural Crack Simulation in Reinforced Concrete Elements Using ABAQUS,” eddBE2011 Proceedings, 2011.
[27]Zhen-Tian Chang, et al, “Short-term behaviour of shallow thin-walled concrete dome under uniform external pressure,” Thin-Walled Structures, Vol 49, 2011.
[28]Said M. Allam, et al, “Evaluation of tension stiffening effect on the crack width calculation of flexural RC members,” Alexandria Engineering Journal, vol. 52, 2013.
[29]Milad Hafezolghorani, et al, “Simplified Damage Plasticity Model for Concrete, Structural Engineering International,” Scientific Paper, 2017.
[30]Wei Demin, He Fukang, “Investigation for plastic damage constitutive models of the concrete material,” Procedia Engineering, Vol 210, pp. 71-78, 2017.
[31]Emmanuel Owoichoechi Momoh, et al, “Behavior of clamp-enhanced palm tendons reinforced concrete,” Construction and Building Materials, Vol 341, 2022.
[32]Ullah H, “Experimental Investigation of the Stress-Strain Behavior and Strength Characterization of Rubberized Reinforced Concrete,” Materials(Basel), 2022.
[33]Mohammed Altaee, et al, “Employment of damage plasticity constitutive model for concrete members subjected to high strain-rate,” European Union Digital Library(EUDL), 2020.
[34]J. Lubliner, “A plastic-damage model for concrete,” International Journal of Solids and Structures, Vol 25, 1989.
[35]Grassl, P., et al, “CDPM2: A damage-plasticity approach to modeling the failure of concrete,” arXiv, 2013.
[36]Reza Mousavi, et al, “EFFICIENCY OF DAMAGE-PLASTICITY MODELS IN CAPTURING COMPACTION-EXPANSION TRANSITION OF CONCRETE UNDER DIFFERENTCOMPRESSION LOADING CONDITIONS,” ECCOMAS Congress,2016.
[37]Xiao Y, et al, “Concrete plastic-damage factor for finite element analysis: Concept, simulation, and experiment,” Advances in Mechanical Engineering, 2017.
[38]B. Alfarah, et al, “New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures,” Engineering Structures, Vol 132, 2017.
[39]Fedoroff, et al, “Behavior of the ABAQUS CDP model in simple stress states,” Journal of Structural Mechanics, Vol 52, 2019.
[40]Adam Wosatko, et al, “Role of dilatancy angle in plasticity-based models of concrete,” Archives of Civil and Mechanical Engineering, Vol 19, 2019.
[41]Hoang- Le Minh, et al, “A concrete damage plasticity model for predicting the effects of compressive high-strength concrete under static and dynamic loads,” Journal of Building Engineering, Vol 44, 2021.
[42]Faxing Ding, et al, “Practical design equations of the axial compressive capacity of circular CFST stub columns based on finite element model analysis incorporating constitutive models for high-strength materials,” Case Studies in Construction Materials, Vol 16, 2022.
[43]Abaqus Inc., “Abaqus Analysis User′s Guide,” Version 6.12, 2012.
[44]Michel Raous (LMA), M′hamed Ali Karray, et al, “Model coupling friction and adhesion for steel-concrete interfaces,” arXiv, 2010.
[45]BAEL 91, “Règles techniques de conception et de calcul des ouvrages et constructions en béton armé suivant la méthode des états limites,” Eyrolles, 1994.
[46]Raphael Jean Boulbes, “Troubleshooting Finite-Element Modeling with Abaqus, With Application in Structural Engineering Analysis, ” Springer, France, 2018.
指導教授 李姿瑩(Tzu-Ying Lee) 審核日期 2023-2-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明