博碩士論文 106681601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:89 、訪客IP:18.221.15.15
姓名 普傑森(Jason Pajimola Punay)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 從衛星觀測看西北太平洋熱帶氣旋快速增強的前兆
(On the Precursors to Rapid Intensification of the Tropical Cyclones in the Western North Pacific from Satellite Observations)
相關論文
★ 利用多頻道衛星觀測評估WRF數值模式於不同微物理方案之雲特性:以梅雨鋒面降水系統個案為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-31以後開放)
摘要(中) 為了增進西北太平洋熱帶氣旋 (TC) 的快速增強 (RI) 的預報能力,本研究使用了衛星遙測資料探討 RI 的前兆。分析包含深對流雲 (DCC)、降水、各種強度階段和增強類別之雲屬性,以及極深對流雲 (VDCC) 中的雲微物理特性。分析結果顯示在不同 TC 強度階段中,皆可利用 DCC作為RI前兆;而降水變數則可作為熱帶低氣壓 (TD) 和熱帶風暴階段的 RI 前兆。研究結果亦呈現 TC 中 DCC 溫度的徑向剖面和 TD 中的雲頂高度,可以清楚地將 RI 與其他增強類別區分開來。研究也發現快速增強的 TC 比緩慢增強的 TC ,於最大風速的半徑內具有更多的 DCC 覆蓋面積與雲冰水路徑 (IWP)比率,無論在何種增強階段。RI 初始時和 24 小時後的特徵是風暴當時的強度和強化率的假象。藉由本研究提高對熱帶氣旋快速增強的理解,我們發現: (1) 檢視並深入探討已知快速增強前兆(DCC 和降水)的適用性; (2)在特定強度階段,利用 TC 中的 DCC 溫度和 TD 中的雲頂高度,並使用 VDCC 中的平均 IWP 與其宿主 TC 的比率作為潛在快速增強的前兆因子。
摘要(英) Toward the advancement in predicting the rapid intensification (RI) of tropical cyclones (TCs) in the western North Pacific, precursors to RI are investigated. The TC’s deep convective cloud (DCC), precipitation, and cloud properties for various intensity stages and intensification categories, as well as the cloud microphysical properties in very deep convective clouds (VDCCs) are examined. This study determined the appropriateness of utilizing the DCC in all TC intensity stages, and the precipitation in tropical depression (TD) and tropical storm stages, as precursors to RI. The study indicated that the radial profile of DCC temperature in major TC, and cloud top height in TD can plainly delineate RI from other intensification categories. Rapidly intensifying TCs are found to have a greater VDCC to TC mean ice water path (IWP) ratio than slowly intensifying TCs, regardless of TC intensity stage. The characteristics at the onset and 24 h of RI are artifacts of the storm’s then current intensity and intensification rate. Results found in this study can be used to improve our understanding of TC RI, by (1) providing new insights on the suitability in using the previously known precursors to RI (DCC and precipitation), and (2) proposing potential precursors to RI at specific intensity stages (DCC temperature in major TC and cloud top height in TD), and using the ratio of the mean IWP in VDCC and its host TC.
關鍵字(中) ★ 热带气旋
★ 快速强化
★ 云属性
★ 雨量
★ 深对流云
★ 前体
關鍵字(英) ★ Tropical cyclone
★ Rapid intensification
★ Cloud properties
★ Rainfall
★ Deep convective cloud
★ Precursor
論文目次 Table of Contents
摘要 i
Abstract ii
Acknowledgments iii
Table of Contents iv
List of Tables vi
List of Figures vii
List of Abbreviations xi
Chapter 1. Introduction 1
1.1 Motivation 1
1.2 Objectives 5
1.3 Dissertation Outline 5
Chapter 2. Characteristics of Deep Convective Clouds, Precipitation, and Cloud Properties of Rapidly Intensifying Tropical Cyclones in the Western North Pacific 6
2.1. Introduction 7
2.2. Data and Methods 11
2.3. Results 14
2.3.1. Mean DCC, Precipitation, and Cloud Properties 15
2.3.2. Radial Distributions 18
2.3.3. Characteristics During Initial and Continuing RI 25
2.4. Summary 29
Chapter 3. Cloud Microphysical Properties of Very Deep Convective Clouds of Rapidly Intensifying Tropical Cyclones in the Western North Pacific 33
3.1. Introduction 34
3.2. Data and Methods 36
3.3. Results 38
3.3.1. Cloud Top Height and Cloud Effective Radius 38
3.3.2. Ice Water Path 41
3.3.3. Specific Cloud Ice and Liquid Water Contents, and Vertical Velocity 46
3.4. Summary 50
Chapter 4. Conclusions and Future Works 53
4.1. General Conclusions 53
4.2. Current and Future Works 54
4.2.1 Lead and Lag Time Characteristics of Associated Rain in DCC and VDCC 54
4.2.2. The DCC Features 24 hr Prior to RI 55
Bibliography 57

參考文獻 Alcala, C. M., & Dessler, A. E. (2002). Observations of deep convection in the tropics using the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar. J. Geophys. Res., 107, 4792, doi:10.1029/2002JD002457
Alvey, G. R. III, Zawislak, J., & Zipser, E. (2015). Precipitation properties observed during tropical cyclone intensity change. Monthly Weather Review, 143(11), 4476–4492. https://doi.org/10.1175/MWR-D-15-0065.1
Balaguru, K., Foltz, G. R., & Leung, L. R. (2018). Increasing magnitude of hurricane rapid intensification in the central and eastern tropical Atlantic. Geophysical Research Letters, 45, 4238– 4247. https://doi.org/10.1029/2018GL077597
Bedka, K., Brunner, J., Dworak, R., Feltz, W., Otkin, J., & Greenwald, T. (2010). Objective Satellite-Based Detection of Overshooting Tops Using Infrared Window Channel Brightness Temperature Gradients. Journal of Applied Meteorology and Climatology, 49(2), 181–202. https://doi.org/10.1175/2009JAMC2286.1
Bhalachandran, S., Nadimpalli, R., Osuri, K. K., Marks, F. D., Gopalakrishnan, S., Subramanian, S., et al. (2019). On the processes influencing rapid intensity changes of tropical cyclones over the Bay of Bengal. Scientific Reports, 9(1), 1–14. https://doi.org/10.1038/s41598-019-40332-z
Bhatia, K., Baker, A., Yang, W. et al. (2022). A potential explanation for the global increase in tropical cyclone rapid intensification. Nat Communications, 13, 6626. https://doi.org/10.1038/s41467-022-34321-6
Bhatia, K.T., Vecchi, G.A., Knutson, T.R. et al. (2019). Recent increases in tropical cyclone intensification rates. Nature Communications, 10, 635. https://doi.org/10.1038/s41467-019-08471-z
Carrasco, C. A., Landsea, C. W., & Lin, Y. L. (2014). The influence of tropical cyclone size on its intensification. Weather and Forecasting, 29(3), 582–590. https://doi.org/10.1175/WAF-D-13-00092.1
Cecil, D. J., & Zipser, E. J. (1999). Relationships between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice-scattering signature and lightning. Monthly Weather Review, 127(1), 103–123. https://doi.org/10.1175/1520-0493(1999)127<0103:RBTCIA>2.0.CO;2
Chan, J. C. L., Duan, Y., &Shay, L. K. (2001). Tropical cyclone intensity change from a simple ocean-atmosphere coupled model. Journal of the Atmospheric Sciences, 58(2), 154–172. https://doi.org/10.1175/1520-0469(2001)058<0154:TCICFA>2.0.CO;2
Chang, C. C., & Wu, C. C. (2017). On the processes leading to the rapid intensification of Typhoon Megi (2010). Journal of the Atmospheric Sciences, 74(4), 1169–1200. https://doi.org/10.1175/JAS-D-16-0075.1
Chen, Y., Gao, S., Li, X., & Shen, X. (2021). Key Environmental Factors for Rapid Intensification of the South China Sea Tropical Cyclones. Front. Earth Sci., 8:609727. https://doi.org/10.3389/feart.2020.609727
Chen, H., & Zhang, D. L. (2013). On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. Journal of the Atmospheric Sciences, 70(1), 146–162. https://doi.org/10.1175/JAS-D-12-062.1
Chen, S. S., & Houze, R. A., Jr. (1997). Diurnal variation and life-cycle of deep convective systems over the tropical pacific warm pool. Quarterly Journal of the Royal Meteorological Society, 123, 357–388. https://doi.org/10.1002/qj.49712353806
Cione, J. J., & Uhlhorn, E. W. (2003). Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Monthly Weather Review, 131(8 PART 2), 1783–1796. https://doi.org/10.1175//2562.1
Črnivec, N., Smith, R. K., & Kilroy, G. (2016). Dependence of tropical cyclone intensification rate on sea-surface temperature. Quarterly Journal of the Royal Meteorological Society, 142(697), 1618–1627. https://doi.org/10.1002/qj.2752
DeMaria, M., Mainelli, M., Shay, L. K., Knaff, J. A., & Kaplan, J. (2005). Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Weather and Forecasting, 20(4), 531–543. https://doi.org/10.1175/WAF862.1
Griffin, S. M., Wimmers, A., Velden, C. S. (2022). Predicting Rapid Intensification in North Atlantic and Eastern North Pacific Tropical Cyclones Using a Convolutional Neural Network. Weather and Forecasting, 37, 1333-1355. https://doi.org/10.1175/WAF-D-21-0194.1
Griffin, S. (2017). Climatology of tropical overshooting tops in North Atlantic tropical cyclones. J. Appl. Meteorol. Climatol., doi:10.1175/JAMC-D-16-0413.1
Guimond, S. R., Heymsfield, G. M., &Turk, F. J. (2010). Multiscale observations of hurricane dennis (2005): The effects of hot towers on rapid intensification. Journal of the Atmospheric Sciences, 67(3), 633–654. https://doi.org/10.1175/2009JAS3119.1
Guo, X., & Tan, Z.-M. (2022). Tropical cyclone intensification and fullness: The role of storm size configuration. Geophysical Research Letters, 49, e2022GL098449. https://doi.org/10.1029/2022GL098449
Hack, J. J., & Schubert, W.H. (1986). Nonlinear response of atmospheric vortices to heating by organized cumulus convection. Journal of the Atmospheric Sciences, 43, 1559–1573, https://dx.doi.org/10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2
Hamada, A., & Nishi, N. (2010). Development of a cloud-top height estimation method by geostationary satellite split-window measurements trained with CloudSat data. Journal of Applied Meteorology and Climatology, 49, 2035–2049. https://doi.org/10.1175/2010JAMC2287.1
Hanley, D., Molinari, J., & Keyser, D. (2001). A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Monthly Weather Review, 129(10), 2570–2584. https://doi.org/10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2
Heymsfield, G. M., Halverson, J. B., Simpson, J., Tian, L., & Bui, T. P. (2001). ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor., 40 , 1310–1330.
Hendricks, E. A. (2012). Internal Dynamical Control on Tropical Cyclone Intensity Variability – A Review. Tropical Cyclone Research and Review, 1(1), 97–105. https://doi.org/10.6057/2012TCRR01.11
Hendricks, E. A., Peng, M. S., Fu, B., & Li, T. (2010). Quantifying environmental control on tropical cyclone intensity change. Monthly Weather Review, 138(8), 3243–3271. https://doi.org/10.1175/2010MWR3185.1
Hendricks, E. A., Montgomery, M. T., & Davis, C. A. (2004). On the role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61 , 1209–1232.
Hennon, P. A. (2006). The role of the ocean in convective burst initiation: Implications for tropical cyclone intensification, Ph.D. dissertation, Ohio State Univ., Columbus, Ohio.
Huang, W.-R., Liu, P.-Y., Chang, Y.-H., & Lee, C.-A. (2021). Evaluation of IMERG Level-3 Products in Depicting the July to October Rainfall over Taiwan: Typhoon Versus Non-Typhoon. Remote Sens., 13, 622. https://doi.org/10.3390/rs13040622
Huffman, G.J., Stocker, E.F., Bolvin, D.T., Nelkin, E.J. & Tan, Jackson (2019). GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V06. Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). Accessed: 01-30 April, 2022. https://doi.org/10.5067/GPM/IMERG/3B-HH/06
Jiang, H. (2012). The relationship between tropical cyclone intensity change and the strength of inner-core convection. Mon. Wea. Rev., 140, 1164–1176, doi:10.1175/MWR-D-11-00134.1
Jiang, H., & Ramirez, E. M. (2013). Necessary conditions for tropical cyclone rapid intensification as derived from 11 years of TRMM data. Journal of Climate, 26(17), 6459–6470. https://doi.org/10.1175/JCLI-D-12-00432.1
Kaplan, J., & DeMaria, M. (2003). Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Weather and Forecasting, 18(6), 1093–1108. https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2
Kaplan, J., DeMaria, M., & Knaff, J. A. (2010). A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Weather and Forecasting, 25(1), 220–241. https://doi.org/10.1175/2009WAF2222280.1
Kawamoto, K., Nakajima, T., & Nakajima, T. Y. (2001). A Global Determination of Cloud Microphysics with AVHRR Remote Sensing. Journal of Climate, 14(9), 2054-2068. https://doi.org/10.1175/1520-0442(2001)014<2054:AGDOCM>2.0.CO;2
Kelley, O. A., & Halverson, J. B. (2011). How much tropical cyclone intensification can result from the energy released inside of a convective burst? Journal of Geophysical Research Atmospheres, 116(20), 1–14. https://doi.org/10.1029/2011JD015954
Kelley, O. A., Stout, J., & Halverson, J. B. (2004) Tall precipitation cells in tropical cyclone eyewalls are associated with tropical cyclone intensification. Geophys. Res. Lett., 31, L24112, doi:10.1029/2004GL021616
Kieper, M. E., & Jiang, H. (2012). Predicting tropical cyclone rapid intensification using the 37 GHz ring pattern identified from passive microwave measurements. Geophysical Research Letters, 39(13). https://doi.org/10.1029/2012GL052115
Kieu, C., Tallapragada, V., and Hogsett, W. (2014), Vertical structure of tropical cyclones at onset of the rapid intensification in the HWRF model, Geophys. Res. Lett., 41, 3298– 3306, doi:10.1002/2014GL059584
Kishtawal, C. M., Jaiswal, N., Singh, R., and Niyogi, D. (2012), Tropical cyclone intensification trends during satellite era (1986–2010), Geophys. Res. Lett., 39, L10810, https://doi.org/10.1029/2012GL051700
Klotzbach, P. J., Wood, K. M., Schreck, C. J., Bowen, S. G., Patricola, C. M., & Bell, M. M. (2022). Trends in global tropical cyclone activity: 1990–2021. Geophysical Research Letters, 49, e2021GL095774. https://doi.org/10.1029/2021GL095774
Komaromi, W.A., & Doyle, J.D. (2017). Tropical cyclone outflow and warm core structure as revealed by HS3 dropsonde data. Mon. Weather.
Rev., 145, 1339–1359. https://doi.org/10.1175/MWR-D-16-0172.1
Knapp, K. R., Kruk, M. C., Levinson, M. C., Diamond, H. J. & Neumann, C. J. (2010). The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bulletin of the American Meteorological Society, 91, 363-376. https://doi:10.1175/2009BAMS2755.1
Knapp, K. R., Diamond, H. J., Kossin, J. P., Kruk, M. C., & Schreck, C. J. (2018).
International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4.WP. NOAA National Centers for Environmental Information. https://doi.org/10.25921/82ty-9e16 09.27.2021
Letu, H., Nagao, T. M., Nakajima, T. Y., Riedi, J., Ishimoto, H., Baran, A. J., et al. (2019). Ice Cloud Properties From Himawari-8/AHI Next-Generation Geostationary Satellite: Capability of the AHI to Monitor the DC Cloud Generation Process. IEEE Transactions on Geoscience and Remote Sensing, 57(6), 3229–3239. https://doi.org/10.1109/TGRS.2018.2882803
Letu, H. et al. (2020). High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite. Remote Sensing of Environment, 239, 111583. https://doi.org/10.1016/j.rse.2019.111583
Li, M.X., Ping, F., Tang, X.B., & Yang, S. (2019). Effects of microphysical processes on the rapid intensification of Super-Typhoon Meranti. Atmos. Res., 219, pp. 77-94, https://doi.org/10.1016/j.atmosres.2018.12.031
Lin, I.-I., Rogers, R. F., Huang, H.-C., Liao, Y.-C., Herndon, D., Yu, J.-Y., et al. (2021). A tale of two rapidly-intensifying supertyphoons: Hagibis (2019) and Haiyan (2013). Bulletin of the American Meteorological Society, 1– 59. https://doi.org/10.1175/bams-d-20-0223.1
Liu, C.-Y., Punay, J. P., Wu, C.-C., Chung, K.-S., & Aryastana, P. (2022). Characteristics of deep convective clouds, precipitation, and cloud properties of rapidly intensifying tropical cyclones in the western North Pacific. Journal of Geophysical Research: Atmospheres, 127, e2022JD037328. https://doi.org/10.1029/2022JD037328
Liu, C.-Y., Chiu, C.-H., Lin, P.-H., & Min, M. (2020). Comparison of Cloud-Top Property Retrievals From Advanced Himawari Imager, MODIS, CloudSat/CPR, CALIPSO/CALIOP, and Radiosonde. Journal of Geophysical Research: Atmospheres, 125(15). https://doi.org/10.1029/2020JD032683
Luo, Z., Liu, G. Y., & Stephens, G. L. (2008). CloudSat adding new insight into tropical penetrating convection, Geophys. Res. Lett., 35, L19819, doi:10.1029/2008GL035330
Mainelli, M. M., DeMaria, M., Shay, L. K., & Goni, G. (2008). Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Weather and Forecasting, 23(1), 3–16. https://doi.org/10.1175/2007WAF2006111.1
Mecikalski, J. R., Watts, P. D., & Koenig, M. (2011). Use of Meteosat Second Generation optimal cloud analysis fields for understanding physical attributes of growing cumulus clouds. Atmospheric Research, 102(1–2), 175–190. https://doi.org/10.1016/j.atmosres.2011.06.023
Miller, W., Chen, H., & Zhang, D. L. (2015). On the intensification of Hurricane Wilma (2005). Part III: Effects of latent heat of fusion. J. Atmos. Sci., 72, 3829–3849. https://doi.org/10.1175/JAS-D-14-0386.1
Miyamoto, Y., &Takemi, T. (2015). A triggering mechanism for rapid intensification of tropical cyclones. Journal of the Atmospheric Sciences, 72(7), 2666–2681. https://doi.org/10.1175/JAS-D-14-0193.1
Monette, S. A., Velden, C. S., Griffin, K. S., & Rozoff, C. M. (2012). Examining trends in satellite-detected tropical overshooting tops as a potential predictor of tropical cyclone rapid intensification. Journal of Applied Meteorology and Climatology, 51(11), 1917– 1930. https://doi.org/10.1175/JAMC-D-11-0230.1
Montgomery, M. T., Nicholls, M. E., Cram, T. A. and Saunders, A. (2006). A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63 , 355–386.
Nakajima, T. Y., & Nakajma, T. (1995). Wide-Area Determination of Cloud Microphysical Properties from NOAA AVHRR Measurements for FIRE and ASTEX Regions. Journal of Atmospheric Sciences, 52(23), 4043-4059, https://doi.org/10.1175/1520-0469(1995)052<4043:WADOCM>2.0.CO;2
Nguyen, L. T., & Molinari, J. (2012). Rapid intensification of a sheared, fast-moving Hurricane over the Gulf Stream. Monthly Weather Review, 140(10), 3361–3378. https://doi.org/10.1175/MWR-D-11-00293.1
Nolan, D. S., Moon, Y., & Stern, D. P. (2007). Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. Journal of the Atmospheric Sciences, 64(10), 3377–3405. https://doi.org/10.1175/JAS3988.1
Oey, L., & Huang, S. (2021). Can a Warm Ocean Feature Cause a Typhoon to Intensify Rapidly? Atmosphere, 12, 6:797. https://doi.org/10.3390/atmos12060797
Pun, I. F., Lin, I. I., & Lo, M. H. (2013). Recent increase in high tropical cyclone heat potential area in the Western North Pacific Ocean. Geophysical Research Letters, 40(17), 4680–4684. https://doi.org/10.1002/grl.50548
Pun, I. F., Chan, J. C. L., Lin, I. I., Chan, K. T. F., Price, J. F., Ko, D. S., et al. (2019). Rapid intensification of Typhoon Hato (2017) over shallowwater. Sustainability (Switzerland), 11(13). https://doi.org/10.3390/su11133709
Punay, J.P., & Liu, C-Y. (2022). Analysed data set for rapidly intensifying tropical cyclones in the western North Pacific [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7151904
Riehl, H. and Malkus, J.S. (1958). On the Heat Balance in the Equatorial Trough Zone. Geophysica, 6, 503-538
Rogers, R., Reasor, P., & Lorsolo, S. (2013). Airborne doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Monthly Weather Review, 141(9), 2970–2991. https://doi.org/10.1175/MWR-D-12-00357.1
Rogers, R. (2010). Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. Journal of the Atmospheric Sciences, 67(1), 44–70. https://doi.org/10.1175/2009JAS3122.1
Ruan, Z., & Wu, Q. (2018). Precipitation, Convective Clouds, and Their Connections With Tropical Cyclone Intensity and Intensity Change. Geophysical Research Letters, 45(2), 1098–1105. https://doi.org/10.1002/2017GL076611
Schubert, W. H., Montgomery, M. T., Taft, R. K., Guinn, T. A., Fulton, S. R., Kossin, J. P., &Edwards, J. P. (1999). Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. Journal of the Atmospheric Sciences, 56(9), 1197–1223. https://doi.org/10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2
Senf, F., & Deneke, H. (2017). Satellite-based characterization of convective growth and glaciation and its relationship to precipitation formation over central Europe. Journal of Applied Meteorology and Climatology, 56(7), 1827–1845. https://doi.org/10.1175/JAMC-D-16-0293.1
Shay, L. K., Goni, G. J., &Black, P. G. (2000). Effects of a warm oceanic feature on Hurricane Opal. Monthly Weather Review, 128(5), 1366–1383. https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2
Shimada, U., Yamaguchi, M. & Nishimura, S. (2020). Is the number of tropical cyclone rapid intensification events in the western North Pacific increasing? SOLA, 16, 1–5. https://doi.org/10.2151/sola.2020-001
Shu, S., Zhang, F., Ming, J., & Wang, Y. (2014). Environmental influences on the intensity changes of tropical cyclones over the western North Pacific. Atmospheric Chemistry and Physics, 14(12), 6329–6342. https://doi.org/10.5194/acp-14-6329-2014
Simpson, J., Halverson, J. B., Ferrier, B. S., Petersen, W. A., Simpson, R. H., Blakeslee, R., & Durden, S. L. (1998). On the role of “hot towers” in tropical cyclone formation. Meteorology and Atmospheric Physics, 67(1–4), 15–35. https://doi.org/10.1007/BF01277500
Song, J., Duan, Y. & Klotzbach, P. J. (2020). Increasing trend in rapid intensification magnitude of tropical cyclones over the western North Pacific. Environ. Res. Lett., 15, 084043. https://doi.org/10.1088/1748-9326/ab9140
Sun, L., Tang, X., Zhuge, X., Tan, Z.-M., & Fang, J. (2021). Diurnal variation of overshooting tops in typhoons detected by Himawari-8 satellite. Geophysical Research Letters, 48, e2021GL095565. https://doi.org/10.1029/2021GL095565
Tao, C., & Jiang, H. (2015). Distributions of shallow to very deep precipitation-convection in rapidly intensifying tropical cyclones. Journal of Climate, 28(22), 8791–8824. https://doi.org/10.1175/JCLI-D-14-00448.1
Tao, C., & Jiang, H. (2013). Global distribution of hot towers in tropical cyclones based on 11-yr TRMM data. Journal of Climate, 26, 1371–1386, doi:10.1175/JCLI-D-12-00291.1
Tao, C., Jiang, H., & Zawislak, J. (2017). The relative importance of stratiform and convective rainfall in rapidly intensifying tropical cyclones. Monthly Weather Review, 145(3), 795–809. https://doi.org/10.1175/MWR-D-16-0316.1
Tierra, M. C. M., & Bagtasa, G. (2022). Identifying the rapid intensification of tropical cyclones using the Himawari-8 satellite and their impacts in the Philippines. International Journal of Climatology, 1– 16. https://doi.org/10.1002/joc.7696
Trabing, B. C. & Bell, M. M. (2020). Understanding Error Distributions of Hurricane Intensity Forecasts during Rapid Intensity Changes. Weather and Forecasting, 35, 2219–2234. https://doi.org/10.1175/WAF-D-19-0253.1
Wang, H., & Wang, Y. (2014). A numerical study of typhoon megi (2010). Part I: Rapid intensification. Monthly Weather Review, 142(1), 29–48. https://doi.org/10.1175/MWR-D-13-00070.1
Wang, S., Rashid, T., Throp, H., & Toumi, R. (2020). A shortening of the life cycle of major tropical cyclones. Geophysical Research Letters, 47, e2020GL088589. https://doi.org/10.1029/2020GL088589
Wang, Y., Rao, Y., Tan, Z. M., & Schönemann, D. (2015). A statistical analysis of the effects of vertical wind shear on tropical cyclone intensity change over the Western North Pacific. Monthly Weather Review, 143(9), 3434–3453. https://doi.org/10.1175/MWR-D-15-0049.1
Wong, M. L. M., &Chan, J. C. L. (2004). Tropical cyclone intensity in vertical wind shear. Journal of the Atmospheric Sciences, 61(15), 1859–1876. https://doi.org/10.1175/1520-0469(2004)061<1859:TCIIVW>2.0.CO;2
Wu, C.-C., W.-T. Tu, I.-F. Pun, I-I. Lin, & M. S. Peng (2016), Tropical cyclone-ocean interaction in Typhoon Megi (2010)—A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations, J. Geophys. Res. Atmos., 121, 153–16 7, https://doi.org/10.1002/2015JD024198
Wu, Q., & Ruan, Z. (2016). Diurnal variations of the areas and temperatures in tropical cyclone clouds. Quarterly Journal of the Royal Meteorological Society, 142(700), 2788–2796. https://doi.org/10.1002/qj.2868
Wu, S. N., Soden, B. J., &Alaka, G. J. (2020a). Ice Water Content as a Precursor to Tropical Cyclone Rapid Intensification. Geophysical Research Letters, 47(21), 1–9. https://doi.org/10.1029/2020GL089669
Wu, S. N., & Soden, B. J. (2017). Signatures of tropical cyclone intensification in satellite measurements of ice and liquid water content. Monthly Weather Review, 145(10), 4081–4091. https://doi.org/10.1175/MWR-D-17-0046.1
Yanai, M., Esbensen, S., & Chu, J.-H. (1973). Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. Journal of the Atmospheric Sciences, 30(4), 611–627. https://doi.org/10.1175/1520-0469(1973)030<0611:dobpot>2.0.co;2
Yang, H.L., Xiao, H., Guo, C.W. (2015). Structure and evolution of a squall line in Northern China: A case study. Atmos. Res. 158, 139–157, https://doi.org/10.1016/j.atmosres. 2015.02.012.
Yang, S., Bankert, R., & Cossuth, J. (2020). Tropical Cyclone Climatology from Satellite Passive Microwave Measurements. Remote Sensing, 12, 3610. https://doi.org/10.3390/rs12213610
Yang, S., Lao, V., Bankert, R., Whitcomb, T.R., & Cossuth, J. (2021). Improved Climatology of Tropical Cyclone Precipitation from Satellite Passive Microwave Measurements. Journal of Climate, 34(11), 4521–4537. https://doi.org/10.1175/JCLI-D-20-0196.1
Yeung, H. Y. (2013). “Convective Hot Tower” Signatures and Rapid Intensification of Severe Typhoon Vicente (1208). Tropical Cyclone Research and Review, 2(2), 96–108. https://doi.org/10.6057/2013TCRR02.03
Zagrodnik, J. P., & Jiang, H. (2014). Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. Journal of the Atmospheric Sciences, 71(8), 2789–2809. https://doi.org/10.1175/JAS-D-13-0314.1
Zhang, D. L., &Chen, H. (2012). Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophysical Research Letters, 39(2), 1–6. https://doi.org/10.1029/2011GL050578
Zhuge, X.-Y., Ming, J., & Wang, Y. (2015). Reassessing the use of inner-core hot towers to predict tropical cyclone rapid intensification. Weather and Forecasting, 30(5), 1265– 1279. https://doi.org/10.1175/WAF-D-15-0024.1
Zipser, E., Zawislak, J. & Jiang, H. (2014). Necessary conditions for intensification of tropical cyclones: The role of mesoscale systems and convective intensity. WWOSC paper SCI-PS120.01
指導教授 劉千義 鍾高陞(Chian-Yi Liu Kao-Shen Chung) 審核日期 2023-1-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明