博碩士論文 109223056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:152 、訪客IP:3.128.198.21
姓名 陳尚逸(Shang-Yi Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 具硝基和胺基取代之八乙基紫質金屬錯合物應 用於電催化二氧化碳還原研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-1以後開放)
摘要(中) 在全球能源及氣候危機的威脅下,開發替代能源及尋求化石燃料替代品成為
重要的研究方向,而利用再生能源以電化學方式將二氧化碳轉換為較高價值的化
學原料為當今熱門的研究主題。在本論文中,我們以八乙基紫質 (H2OEP) (1) 為配
位基,經過硝基及胺基作為 meso 位置推拉電子基修飾,並分別合成鎳、鈷和銅三
種金屬離子錯合物作為催化劑,進行電催化二氧化碳還原活性研究。我們將八乙
基紫質金屬錯合物吸附於碳黑粒子上,其中八乙基紫質金屬錯合物與碳黑之重量
比值為 1,使分子催化劑固定於碳質載體形成異相催化劑,結合氣體擴散電極
(GDE),並應用於流式電解槽 (Flow cell ) 中進行二氧化碳還原反應 (CO2RR),實
驗結果得到在以 Ag/AgCl 為參考電極之 -1.8 V 工作電位下,CoOEP (1-Co) 對於二
氧化碳還原至 CO 的法拉第效率 FECO最高達到 98%,且電流密度 jCO也高達 100.7
mA/cm2 ,而以硝基修飾後之 Co-NO2-OEP (2-Co) 在相同電位及相同電池條件下的
FECO = 99% 及 jCO = 104.2 mA/cm2,結果表明將八乙基鈷紫質結合導電碳材應用於
流式電解槽 (Flow cell) 的策略能高效催化二氧化碳還原反應生成一氧化碳,並且
由固定電流電催化實驗中發現在相同還原電流值下 Co-NO2-OEP (2-Co) 所反映出
的還原電位較 CoOEP (1-Co) 低約 0.1 至 0.2 V,表示以硝基作為拉電子基修飾後的
八乙基鈷紫質能更有利於電子傳遞至催化劑中心進行 CO2RR,展現出較佳的催化
活性。
摘要(英) Under the threat of escalating carbon emission and severe weather events, developing
alternative energy technology for producing carbon feedstocks to replace fossil fuels as a
strategy of decarbonization has become important. The electrochemical CO2 reduction to high
valuable chemicals by green electricity, which can simultaneously reduce atmospheric CO2
concentration and produce fossil fuel alternatives has been considered as a possible strategy to
mitigate the greenhouse gas. In this work, a comparative study of meso-nitro and amino
functionalized octaethylporphyrin metal complexes (M = Ni, Co, Cu) mixed with
carbonaceous materials (carbon black, CB) as heterogeneous catalysts and fabricated on the
surface of gas diffusion layer (GDL) as a working electrode of flow electrochemical cells was
conducted for electrochemical CO2 reduction. The results show that CoOEP (1-Co) as the
active catalyst exhibits a 98% Faradaic efficiency (FE) for the CO formation with a partial
current density (jCO) of 100.7 mA/cm2
at -1.8 V vs. Ag/AgCl, while Co-NO2-OEP (2-Co)
exhibits 99% Faradaic efficiency (FE) to CO with an extraordinary partial current density (jCO)
of 104.2 mA/cm2
under the same potential. Our results demonstrate that the combination of
octaethylporphyrin cobalt complexes mixed with conductive carbonaceous material as the
cathodic catalysts for flow cells provides an effective strategy for CO2 reduction reactions
(CO2RR) to CO, and the presence of the electron withdrawing NO2 groups on meso position
of CoOEP (1-Co) enhances the interfacial electron delivery rate to catalyst and exhibits better
catalytic activity.
關鍵字(中) ★ 金屬紫質
★ 二氧化碳還原
關鍵字(英)
論文目次 目錄
摘要........................................................................................................................i
Abstract .................................................................................................................ii
目錄......................................................................................................................iii
圖目錄..................................................................................................................vi
表目錄..................................................................................................................ix
附錄圖譜目錄....................................................................................................... x
符號說明..............................................................................................................xi
一、 緒論............................................................................................................. 1
1-1 前言.................................................................................................................................1
1-1-1 二氧化碳 .................................................................................................................1
1-1-2 氣候危機 ..................................................................................................................2
1-1-3 二氧化碳捕捉、封存以及再利用 (CO2 Capture, Storage and Utilization, CCSU)
............................................................................................................................................3
1-2 紫質.................................................................................................................................5
1-2-1 紫質的結構與命名 ..................................................................................................5
1-2-2 紫質衍生物合成及其應用 ......................................................................................6
1-2-3 紫質電子吸收光譜性質 ........................................................................................ 11
iv
1-3 二氧化碳還原反應 (Carbon dioxide reduction reaction , CO2RR)..............................13
1-3-1 電催化二氧化碳還原反應 ....................................................................................13
1-3-2 電催化 CO2RR 電解槽裝置 ..................................................................................16
1-3-3 電催化 CO2RR 催化劑文獻回顧 ..........................................................................21
1-4 研究動機........................................................................................................................26
二、實驗部分..................................................................................................... 27
2-1 實驗藥品........................................................................................................................27
2-2 儀器................................................................................................................................28
2-3 八乙基紫質衍生物及其鎳、鈷、銅金屬錯合物的合成與鑑定................................30
2-4 奈米銅立方之合成步驟................................................................................................37
2-5 電化學性質分析-循環伏安法(Cyclic Voltammetry, CV) ............................................40
2-6 電催化二氧化碳還原實驗...........................................................................................40
2-6-1 氣體擴散電極(GDE)製備......................................................................................41
2-6-2 流式電解槽(Flow cell)之實驗裝置組成...............................................................42
2-6-3 電解實驗流程及條件 ............................................................................................42
2-6-4 GC 氫氣濃度檢量線.............................................................................................44
三、結果與討論................................................................................................. 46
3-1 八乙基紫質 (OEP) 系列之紫外光-可見光吸收光譜圖探討 ......................................46
3-2 八乙基紫質 (OEP) 系列之電化學分析........................................................................49
3-2-1 推拉電子取代基對電化學性質的影響 ................................................................49
3-2-2 以循環伏安法快速評估八乙基金屬紫質錯合物於 CO2RR 活性 ......................51
3-3 八乙基紫質 (OEP) 系列之電催化二氧化碳還原研究結果........................................55
3-4 奈米銅立方結構鑑定與電催化二氧化碳還原研究....................................................71
3-4-1 奈米銅立方 (Nano Copper Cube) 之 SEM 影像...................................................71
v
3-4-2 奈米銅立方之粉末 X 光繞射圖 (PXRD) .............................................................72
3-4-3 奈米銅立方之電催化二氧化碳還原研究結果 ....................................................73
四、結論............................................................................................................. 77
五、參考資料..................................................................................................... 79
六、附錄............................................................................................................. 81
參考文獻 (1) National Ocean and Atmospheric Administration. 2019,
https://www.noaa.gov/education/resource-collections/climate/carbon-cycle
(2) Intergovernmental Panel on Climate Change.
https://archive.ipcc.ch/publications_and_data/ar4/wg1/en/faq-1-3.html
(3) National Ocean and Atmospheric Administration.
https://gml.noaa.gov/ccgg/trends/
(4) 中華民國經濟部 https://www.go-moea.tw/
(5) IEA (2021), Net Zero by 2050, IEA, Paris https://www.iea.org/reports/net-zero-by-2050,
License: CC BY 4.0
(6) Bui, M.; Adjiman, C. S.; Bardow, A.; Anthony, E. J.; Boston, A.; Brown, S.; Fennell, P. S.;
Fuss, S.; Galindo, A.; Hackett, L. A. Energy Environ. Sci. 2018, 11, 1062-1176.
(7) IEA (2021), About CCUS, IEA, Paris https://www.iea.org/reports/about-ccus, License: CC
BY 4.0
(8) Fan, L.; Xia, C.; Yang, F.; Wang, J.; Wang, H.; Lu, Y. Sci. Adv. 2020, 6,eaay3111.
(9) Alper, E.; Orhan, O. Y. Petroleum 2017, 3, 109-126.
(10) Atefi, Farzad (2007) PhD thesis, Queensland University of Technology.
https://eprints.qut.edu.au/17563/
(11) Inhoffen, H. H.; Fuhrhop, J. H.; Voigt, H.; Brockmann Jr, H. Justus Liebigs Ann. Chem.
1966, 695, 133-143.
(12) Paine III, J. B.; Kirshner, W. B.; Moskowitz, D. W.; Dolphin, D. J. Org. Chem. 1976, 41,
3857-3860.
(13) C. B. Wang, C. K. Chang, Synthesis 1979, 548–549.
(14) Lindsey, J. S.; Schreiman, I. C.; Hsu, H. C.; Kearney, P. C.; Marguerettaz, A. M. J. Org.
Chem. 1987, 52, 827-836.
(15) Lanzilotto, A., Kyropoulou, M., Constable, E.C. et al. J Biol. Inorg. Chem. 2018, 23,
109-122.
(16) Hsieh, C.-P.; Lu, H.-P.; Chiu, C.-L.; Lee, C.-W.; Chuang, S.-H.; Mai, C.-L.; Yen, W.-N.;
Hsu, S.-J.; Diau, E. W.-G.; Yeh, C.-Y. J. Mater. Chem. 2010, 20, 1127-1134.
(17) Kawao, M.; Ozawa, H.; Tanaka, H.; Ogawa, T. Thin Solid Films 2006, 499, 23-28.
(18) Canales, C.; Olea, A. F.; Gidi, L.; Arce, R.; Ramírez, G. Electrochim. Acta 2017, 258,
850-857.
(19) Wada, T.; Tachi, Y.; Toyota, K.; Kozaki, M. Tetrahedron Lett. 2022, 108, 154131.
(20) Joseph, M.; Haridas, S. Int. J. Hydrog. Energy 2020, 45, 11954-11975.
(21) Giovannetti, R. (2012). The Use of Spectrophotometry UV-Vis for the Study of Porphyri
ns. In (Ed.), Macro To Nano Spectroscopy. IntechOpen. https://doi.org/10.5772/38797
(22) Gouterman, M. J. Mol. Spectrosc. 1961, 6, 138-163.
80
(23) Hung, S.-F. Pure Appl. Chem. 2020, 92, 1937-1951.
(24) Ye, W.; Guo, X.; Ma, T. Chem. Eng. J. 2021, 414, 128825.
(25) Jin, S.; Hao, Z.; Zhang, K.; Yan, Z.; Chen, J. Angew. Chem. Int. Ed. 2021, 60, 20627-
20648.
(26) Li, K.; An, X.; Park, K. H.; Khraisheh, M.; Tang, J. Catal. Today 2014, 224, 3-12.
(27) Li, F.; MacFarlane, D. R.; Zhang, J. Nanoscale 2018, 10, 6235-6260.
(28) Xiao, C.; Zhang, J. ACS nano 2021, 15, 7975-8000.
(29) Sun, Z.; Hu, Y.; Zhou, D.; Sun, M.; Wang, S.; Chen, W. ACS Energy Lett. 2021, 6, 3992-
4022.
(30) Jiang, G.; Han, D.; Han, Z.; Gao, J.; Wang, X.; Weng, Z.; Yang, Q.-H. Trans. Tianjin
Univ. 2022, 1-27.
(31) Hori, Y.; Kikuchi, K.; Suzuki, S. Chem. Lett. 1985, 14, 1695-1698.
(32) Liang, S.; Altaf, N.; Huang, L.; Gao, Y.; Wang, Q. J. CO2 Util. 2020, 35, 90-105.
(33) Lin, R.; Guo, J.; Li, X.; Patel, P.; Seifitokaldani, A. J. Catal. 2020, 10, 473.
(34) Lees, E. W.; Mowbray, B. A.; Salvatore, D. A.; Simpson, G. L.; Dvorak, D. J.; Ren, S.;
Chau, J.; Milton, K. L.; Berlinguette, C. P. J. Mater. Chem. A 2020, 8, 19493-19501.
(35) Liu, K.; Smith, W. A.; Burdyny, T. ACS Energy Lett. 2019, 4, 639-643.
(36) Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. J. Phys. Chem.
Lett. 2015, 6, 4073-4082.
(37) Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. Chem. Soc. Rev. 2014, 43, 631-675.
(38) Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrochim. Acta 1994, 39, 1833-1839.
(39) Costentin, C.; Drouet, S.; Robert, M.; Savéant, J.-M. Science 2012, 338, 90-94.
(40) Costentin, C.; Robert, M.; Savéant, J.-M. Acc. Chem. Res. 2015, 48, 2996-3006.
(41) Ren, X.; Liu, S.; Li, H.; Ding, J.; Liu, L.; Kuang, Z.; Li, L.; Yang, H.; Bai, F.; Huang, Y.
Sci. China Chem. 2020, 63, 1727-1733.
(42) Li, F.; Li, Y. C.; Wang, Z.; Li, J.; Nam, D.-H.; Lum, Y.; Luo, M.; Wang, X.; Ozden, A.;
Hung, S.-F. et. al Nat. Catal. 2020, 3, 75-82.
(43) De Gregorio, G. L.; Burdyny, T.; Loiudice, A.; Iyengar, P.; Smith, W. A.; Buonsanti, R.
ACS Catal. 2020, 10, 4854-4862.
(44) Chizhova, N.; Rusanov, A.; Mamardashvili, N. Z. Russ. J. Gen. Chem. 2020, 90, 1878-
1883.
(45) Matsumura, M.; Tanatani, A.; Kaneko, T.; Azumaya, I.; Masu, H.; Hashizume, D.;
Kagechika, H.; Muranaka, A.; Uchiyama, M. Tetrahedron 2013, 69, 10927-10932.
(46) Strach, M.; Mantella, V.; Pankhurst, J. R.; Iyengar, P.; Loiudice, A.; Das, S.;
Corminboeuf, C. m.; van Beek, W.; Buonsanti, R. J. Am. Chem. Soc. 2019, 141, 16312-16322.
(47) Guo, H.; Chen, Y.; Cortie, M. B.; Liu, X.; Xie, Q.; Wang, X.; Peng, D.-L. J. Phys. Chem.
C . 2014, 118, 9801-9808.
(48) Yang, H.-J.; He, S.-Y.; Chen, H.-L.; Tuan, H.-Y. Chem. Mater. 2014, 26, 1785-1793.
(49) König, M.; Vaes, J.; Klemm, E.; Pant, D. Iscience 2019, 19, 135-160.
81
(50) Torbensen, K.; Joulié, D.; Ren, S.; Wang, M.; Salvatore, D.; Berlinguette, C. P.; Robert,
M. ACS Energy Lett. 2020, 5, 1512-1518.
(51) Abdinejad, M.; Dao, C.; Zhang, X.-A.; Kraatz, H. B. J. Energy Chem. 2021, 58, 162-169.
(52) Guzmán, H.; Zammillo, F.; Roldán, D.; Galletti, C.; Russo, N.; Hernández, S. Catalysts
2021, 11, 482.
(53) Yang, H.-J.; He, S.-Y.; Tuan, H.-Y. Langmuir 2014, 30, 602-610.
(54) Buonsanti, R.; Wang, M.; Nikolaou, V.; Loiudice, A.; Sharp, I. D.; Llobet, A. Chem. Sci.
2022, 13, 12673-12680.
指導教授 洪政雄 陳銘洲 審核日期 2022-12-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明