博碩士論文 107384601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.21.97.51
姓名 葉智豪(Dhanang Edy Pratama)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 Chemical Resource Recycling and Waste Mitigation in Pharmaceutical Manufacturing Processes
(Chemical Resource Recycling and Waste Mitigation in Pharmaceutical Manufacturing Processes)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-10以後開放)
摘要(中) 由於永續觀念的重要性逐漸興起,製藥領域也希望可將此觀念帶入其行業中發展。為了有助於了解那些模式的轉變,提出了一系列從開發產品至最終產品皆採用永續性方法的範例研究。

在範例一中,介紹了在開發(R,S)-(±)-ibuprofen的手性分析範例中,藉由漿料反應結晶來回收過量的試劑及溶劑。拆分劑(56.8至77.5 mol%)及廢液(75.8至87.9 wt%)的回收所得到液體會在後續批次中重複使用,結果顯示可得到純度為 70.2 至 90.0% 的(S)-(+)-ibuprofen。

在製造過程中,廢物處理是不可避免的。因此,在範例二中,介紹一種在生產含砷的化療針劑過程中所產生的含砷廢水。為了從此廢水中去除砷,開發了一種砷吸附劑由洋菜膠與水合氧化鐵製成。將含有250 μg的As(III) / L的As(III)廢水通過裝有砷吸附劑的管柱,As(III)的濃度可以降低到10 μg的As(III) / L,符合WHO規定的標準。

最後,製藥工程的汙染不會只發生在製造過程中。汙染可能產生在處理過期的藥物之中,因此在範例三中發展出回收未使用的acetaminophen藥錠、 (R,S)-(±)-ibuprofen和As2O3針劑,將從過期的藥物中回收其含有的活性藥物成分。利用固液萃取方法acetaminophen藥錠、 (R,S)-(±)-ibuprofen的回收率分別達到58.7% 及67.6%,而對於隨者蒸發結晶法的發展,As2O3針劑的回收率可達到65.2%至79.9%。 所有回收的產品都是具有穩定的晶形以及符合經HPLC所測定的純度標準。
摘要(英) Due to the ever-increasing awareness of the importance of sustainability, pharmaceutical sector is expected to adopt a sustainable mindset as well. As a means to contribute to those paradigm shift, a series of case studies concerning about developing a sustainable process from the beginning to the end product are presented. In Case I, a method to recycle the spent excess reagent and solvent by slurry reactive crystallization was developed in the chiral resolution of (R,S)-(±)-ibuprofen. The recycle of the resolving agent (56.8 to 77.5 mol%) and spent mother liquor (75.8 to 87.9 wt%) were resulted and reused in subsequent batches, while at the same time, the enriched (S)-(+)-ibuprofen with enantiopurity of 70.2 to 90.0% was produced. However, in reality, waste disposal will be inevitable at some point in a manufacturing process. Therefore, in Case II, an arsenic-containing wastewater produced from the production of an arsenic-based chemotherapeutic agent was presented. To remove arsenic from this wastewater, an arsenic adsorbent made of hydrous ferric oxide impregnated in agarose beads was developed. By passing the wastewater containing 250 μg of As(III) / L of As(III) through a column packed with the adsorbent, the concentration of As(III) could be reduced to 10 μg of As(III) / L of As(III), which was in conformity with the WHO recommended limit. Lastly, pharmaceutical pollution may also happen outside the manufacturing facility. Some of the finished pharmaceutical products may end up being unused, in which its disposal would be problematic. Therefore, in Case III, processes were developed to recycle unused acetaminophen tablets, (R,S)-(±)-ibuprofen tablets, and As2O3 injectables for chemotherapy by salvaging the valuable active pharmaceutical ingredients from those unused drug products. Utilizing a process based on solid-liquid extraction, acetaminophen and (R,S)-(±)-ibuprofen could be recovered with the yield of 58.7 wt% and 67.6 wt%, respectively. For the As2O3 injectables, evaporative crystallization-based protocol was developed, which could recover 65.2 to 79.9 wt% of As2O3. All of those recovered products were recovered in the desired stable crystal form, and were in conformity with the purity standard based on HPLC assay.
關鍵字(中) ★ 永續
★ 回收
★ 手性分析
★ 吸附
★ 藥物
關鍵字(英) ★ Sustainabiity
★ Recycle
★ Chiral Resolution
★ Adsorption
★ Drug Product
論文目次 摘要 i
Abstract iii
Acknowledgement v
Table of Contents vi
List of Figures ix
List of Tables xv
Chapter 1 Introduction 1
1.1 Research Background 1
1.2 Solvent Consumption in Pharmaceutical Industry 3
1.3 Reagent Consumption in Pharmaceutical Industry 6
1.4 Mitigating Pharmaceutical Wastewater Effluents 8
1.5 The Waste of Unused Pharmaceutical Products 10
1.5.1 The Problem of Unused Medications 10
1.5.2 The Impact of Unused Drugs 13
1.5.3 Contents of a Drug Product 15
1.5.4 Drug Recycle 16

Chapter 2 Simultaneous Recycle of Excess Reagent and Solvent by Slurry Reactive Crystallization: The Case of Chiral Resolution of (R,S)-(±)-ibuprofen 18
2.1 Key Points in Chapter 2 18
2.2 Literature Review 19
2.2.1 Slurry Reactive Crystallization 19
2.2.2 Chiral Resolution by Diastereomeric Salt Formation 24
2.2.3 The Necessity of Recycling the Resolving Agent 44
2.2.4 Slurry Reactive Crystallization for a Simultaneous Recycle of Excess Resolving Agent and Solvent 45
2.3 Process Overview 47
2.4 Materials and Methods 50
2.5 Results and Discussions 58
2.5.1 Mechanism of Slurry Reactive Crystallization 58
2.5.2 Construction of the Phase Diagrams 67
2.5.3 Resolution of the Diastereomers 75
2.5.4 Recycling of Resolving Agent and Solvent 80
2.5.5 E-Factor 86
2.6 Conclusions 88

Chapter 3 Mitigation of Arsenic-Containing Wastewater from a Pharmaceutical Manufacturing Process 89
3.1 Key Points in Chapter 3 89
3.2 Literature Review 90
3.2.1 Arsenic as a Pharmaceutical Substance and Pollutant 90
3.2.2 Arsenic-containing Wastewater Treatment Processes 91
3.2.3 Synthesis of Hydrous Ferric Oxide-impregnated Agarose Beads as Arsenic Adsorbent 92
3.3 Materials and Methods 95
3.4 Results and Discussion 102
3.4.1 Characterization of the Synthesized HFO-impregnated Agarose Beads 102
3.4.2 Batch Adsorption-Desorption of As(III) by HFO-impregnated Agarose Beads 106
3.4.3 Removal of As(III) from Pharmaceutical Wastewater by Adsorption in a Packed Column and the Underlying Mechanism 113
3.5 Conclusions 124

Chapter 4 Drug Recycle: Recovery of Active Pharmaceutical Ingredients from Unused Drug Products 125
4.1 Key Points in Chapter 4 125
4.2 Literature Review 126
4.2.1 Background 126
4.2.2 Previous Works of Active Pharmaceutical Ingredient Recovery from Unused Drug Products 127
4.3 Materials 129
4.3.1 Chemicals 129
4.3.2 Drug Products 129
4.3.3 Solvents 130
4.4 Characterizations 130
4.5 Active Pharmaceutical Ingredient Recovery from Solid Dosage Form Drugs: Acetaminophen and (R,S)-(±)-ibuprofen Tablets 132
4.5.1 Initial Solvent Screening and Form Space of Acetaminophen, (R,S)-()-Ibuprofen and Eight Representative Excipients 132
4.5.2 Process Flowchart 134
4.5.3 Recovery of Acetaminophen from Unused Tablets 137
4.5.4 Recovery of (R,S)-(±)-ibuprofen from Unused Tablets 140
4.6 Active Pharmaceutical Ingredient Recovery from Solution Dosage Form Drugs: Arsenic Trioxide Injectables 144
4.6.1 Process Flowchart 145
4.6.2 Recovery of Arsenic Trioxide from Unused Injectables 148
4.7 Conclusions 154

Chapter 5 Conclusions 155
Bibliographies 158
Supplementary Information 195
參考文獻 (1) Fernández Casares, A.; Nap, W. M.; Ten Figás, G.; Huizenga, P.; Groot, R.; Hoffmann, M. An Evaluation of Salt Screening Methodologies. J. Pharm. Pharmacol. 2015, 67 (6), 812–822. https://doi.org/10.1111/jphp.12377.
(2) Bastin, R. J.; Bowker, M. J.; Slater, B. J. Salt Selection and Optimisation Procedures for Pharmaceutical New Chemical Entities. Org. Process Res. Dev. 2000, 4 (5), 427–435. https://doi.org/10.1021/op000018u.
(3) Lee, T.; Wang, Y. W. Initial Salt Screening Procedures for Manufacturing Ibuprofen. Drug Dev. Ind. Pharm. 2009, 35 (5), 555–567. https://doi.org/10.1080/03639040802459452.
(4) Grodowska, K.; Parczewski, A. Organic Solvents in the Pharmaceutical Industry. Acta Pol. Pharm. 2010, 67 (1), 3–12. https://doi.org/10.1021/cg034055z.
(5) Constable, D. J. C.; Jimenez-Gonzalez, C.; Henderson, R. K. Perspective on Solvent Use in the Pharmaceutical Industry. Org. Process Res. Dev. 2007, 11 (1), 133–137. https://doi.org/10.1021/op060170h.
(6) Jiménez-Gonzalez, C.; Curzons, A. D.; Constable, D. J. C.; Cunningham, V. L. Expanding GSK’s Solvent Selection Guide - Application of Life Cycle Assessment to Enhance Solvent Selections. Clean Technol. Environ. Policy 2004, 7, 42–50. https://doi.org/10.1007/s10098-004-0245-z.
(7) Welton, T. Solvents and Sustainable Chemistry. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 1–26. https://doi.org/10.1098/rspa.2015.0502.
(8) Blaney, B. L. Treatment Technologies for Hazardous Wastes: Part II Alternative Techniques for Managing Solvent Wastes. J. Air Pollut. Control Assoc. 1986, 36 (3), 275–285. https://doi.org/10.1080/00022470.1986.10466070.
(9) Seyler, C.; Capello, C.; Hellweg, S.; Bruder, C.; Bayne, D.; Huwiler, A.; Hungerbühler, K. Waste-Solvent Management as an Element of Green Chemistry: A Comprehensive Study on the Swiss Chemical Industry. Ind. Eng. Chem. Res. 2006, 45 (22), 7700–7709. https://doi.org/10.1021/ie060525l.
(10) Jiménez-González, C.; Curzons, A. D.; Constable, D. J. C.; Cunningham, V. L. Cradle-to-Gate Life Cycle Inventory and Assessment of Pharmaceutical Compounds. Int. J. Life Cycle Assess. 2004, 9 (2), 114–121. https://doi.org/10.1007/BF02978570.
(11) Raymond, M. J.; Slater, C. S.; Savelski, M. J. LCA Approach to the Analysis of Solvent Waste Issues in the Pharmaceutical Industry. Green Chem. 2010, 12 (10), 1826–1834. https://doi.org/10.1039/c003666h.
(12) Alfonsi, K.; Colberg, J.; Dunn, P. J.; Fevig, T.; Jennings, S.; Johnson, T. A.; Kleine, H. P.; Knight, C.; Nagy, M. A.; Perry, D. A.; Stefaniak, M. Green Chemistry Tools to Influence a Medicinal Chemistry and Research Chemistry Based Organisation. Green Chem. 2008, 10 (1), 31–36. https://doi.org/10.1039/b711717e.
(13) Curzons, A. D.; Constable, D. C.; Cunningham, V. L. Solvent Selection Guide: A Guide to the Integration of Environmental, Health and Safety Criteria Into the Selection of Solvents. Clean Prod. Process. 1999, 1, 82–90.
(14) Henderson, R. K.; Jiménez-González, C.; Constable, D. J. C.; Alston, S. R.; Inglis, G. G. A.; Fisher, G.; Sherwood, J.; Binks, S. P.; Curzons, A. D. Expanding GSK’s Solvent Selection Guide – Embedding Sustainability into Solvent Selection Starting at Medicinal Chemistry. Green Chem. 2011, 13 (4), 854–862. https://doi.org/10.1039/c0gc00918k.
(15) Prat, D.; Pardigon, O.; Flemming, H.-W.; Letestu, S.; Ducandas, V.; Isnard, P.; Guntrum, E.; Senac, T.; Ruisseau, S.; Cruciani, P.; Hosek, P. Sanofi’s Solvent Selection Guide: A Step Toward More Sustainable Processes. Org. Process Res. Dev. 2013, 17 (12), 1517–1525.
(16) Chen, Y.; Mu, T. Revisiting Greenness of Ionic Liquids and Deep Eutectic Solvents. Green Chem. Eng. 2021, 2 (2), 174–186. https://doi.org/10.1016/j.gce.2021.01.004.
(17) Erythropel, H. C.; Zimmerman, J. B.; De Winter, T. M.; Petitjean, L.; Melnikov, F.; Lam, C. H.; Lounsbury, A. W.; Mellor, K. E.; Janković, N. Z.; Tu, Q.; Pincus, L. N.; Falinski, M. M.; Shi, W.; Coish, P.; Plata, D. L.; Anastas, P. T. The Green ChemisTREE: 20 Years After Taking Root with the 12 Principles. Green Chem. 2018, 20 (9), 1929–1961. https://doi.org/10.1039/c8gc00482j.
(18) Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39 (1), 301–312. https://doi.org/10.1039/b918763b.
(19) Earle, M. J.; Esperança, J. M. S. S.; Gilea, M. A.; Lopes, J. N. C.; Rebelo, L. P. N.; Magee, J. W.; Seddon, K. R.; Widegren, J. A. The Distillation and Volatility of Ionic Liquids. Nature 2006, 439, 831–834. https://doi.org/10.1038/nature04451.
(20) Jessop, P. G. Searching for Green Solvents. Green Chem. 2011, 13 (6), 1391–1398. https://doi.org/10.1039/c0gc00797h.
(21) Zhang, Y.; Bakshi, B. R.; Demessie, E. S. Life Cycle Assessment of an Ionic Liquid versus Molecular Solvents and Their Applications. Environ. Sci. Technol. 2008, 42, 1724–1730. https://doi.org/10.1021/es0713983.
(22) Dale, D. J.; Dunn, P. J.; Golightly, C.; Hughes, M. L.; Levett, P. C.; Pearce, A. K.; Searle, P. M.; Ward, G.; Wood, A. S. The Chemical Development of the Commercial Route to Sildenafil: A Case History. Org. Process Res. Dev. 2000, 4 (1), 17–22. https://doi.org/10.1021/op9900683.
(23) Michalchuk, A. A. L.; Tumanov, I. A.; Boldyreva, E. V. Complexities of Mechanochemistry: Elucidation of Processes Occurring in Mechanical Activators via Implementation of a Simple Organic System. CrystEngComm 2013, 15 (32), 6403–6412. https://doi.org/10.1039/c3ce40907d.
(24) Hasa, D.; Perissutti, B.; Cepek, C.; Bhardwaj, S.; Carlino, E.; Grassi, M.; Invernizzi, S.; Voinovich, D. Drug Salt Formation via Mechanochemistry: The Case Study of Vincamine. Mol. Pharm. 2013, 10 (1), 211–224. https://doi.org/10.1021/mp300371f.
(25) Konnert, L.; Reneaud, B.; De Figueiredo, R. M.; Campagne, J. M.; Lamaty, F.; Martinez, J.; Colacino, E. Mechanochemical Preparation of Hydantoins from Amino Esters: Application to the Synthesis of the Antiepileptic Drug Phenytoin. J. Org. Chem. 2014, 79 (21), 10132–10142. https://doi.org/10.1021/jo5017629.
(26) Tan, D.; Štrukil, V.; Mottillo, C.; Friščić, T. Mechanosynthesis of Pharmaceutically Relevant Sulfonyl-(Thio)Ureas. Chem. Commun. 2014, 50 (40), 5248–5250. https://doi.org/10.1039/c3cc47905f.
(27) Lee, H. L.; Vasoya, J. M.; Cirqueira, M. de L.; Yeh, K. L.; Lee, T.; Serajuddin, A. T. M. Continuous Preparation of 1:1 Haloperidol−Maleic Acid Salt by a Novel Solvent-Free Method Using a Twin Screw Melt Extruder. Mol. Pharm. 2017, 14 (4), 1278–1291.
(28) Cliffe, M. J.; Mottillo, C.; Stein, R. S.; Bučar, D. K.; Friščić, T. Accelerated Aging: A Low Energy, Solvent-Free Alternative to Solvothermal and Mechanochemical Synthesis of Metal-Organic Materials. Chem. Sci. 2012, 3 (8), 2495–2500. https://doi.org/10.1039/c2sc20344h.
(29) Hayler, J. D.; Leahy, D. K.; Simmons, E. M. A Pharmaceutical Industry Perspective on Sustainable Metal Catalysis. Organometallics 2019, 38 (1), 36–46. https://doi.org/10.1021/acs.organomet.8b00566.
(30) Cann, M. C.; Connelly, M. E. The BHC Company Synthesis of Ibuprofen: A Greener Synthesis of Ibuprofen Which Creates Less Waste and Fewer Byproducts. In Real World Cases in Green Chemistry; American Chemical Society: Washington DC, 2000; pp 19–24.
(31) Elango, V.; Murphy, M. A.; Smith, B. L.; Davenport, K. G.; Mott, G. N.; Moss, G. L. Method for Producing Ibuprofen. US Pat., 4,981,995, 1991. https://doi.org/Nov, 6, 1972.
(32) Roduner, E. Understanding Catalysis. Chem. Soc. Rev. 2014, 43 (24), 8226–8239. https://doi.org/10.1039/c4cs00210e.
(33) Phan, H. V. Process for the Preparation of Sodium Salt of Ibuprofen of Different Particle Sizes. US 2009/0305041 A1, 2009.
(34) Ferreira, F. C.; Macedo, H.; Cocchini, U.; Livingston, A. G. Development of a Liquid-Phase Process for Recycling Resolving Agents Within Diastereomeric Resolutions. Org. Process Res. Dev. 2006, 10 (4), 784–793. https://doi.org/10.1021/op0600456.
(35) Damayanti, J. D.; Pratama, D. E.; Lee, T. Green Technology for Salt Formation: Slurry Reactive Crystallization Studies for Papaverine HCl and 1:1 Haloperidol-Maleic Acid Salt. Cryst. Growth Des. 2019, 19 (5), 2881–2891. https://doi.org/10.1021/acs.cgd.9b00098.
(36) Dieter, C. A.; Maupin, M. A.; Caldwell, R. R.; Harris, M. A.; Ivahnenko, T. I.; Lovelace, J. K.; Barber, N. L.; Linsey, K. S. Estimated Use of Water in the United States in 2015: U.S. Geological Survey Circular 1441; 2018.
(37) UN Water https://www.unwater.org/ (accessed Oct 20, 2022).
(38) Samal, K.; Mahapatra, S.; Hibzur Ali, M. Pharmaceutical Wastewater as Emerging Contaminants (EC): Treatment Technologies, Impact on Environment and Human Health. Energy Nexus 2022, 6 (February), 100076. https://doi.org/10.1016/j.nexus.2022.100076.
(39) Gadipelly, C.; Pérez-González, A.; Yadav, G. D.; Ortiz, I.; Ibáñez, R.; Rathod, V. K.; Marathe, K. V. Pharmaceutical Industry Wastewater : Review of the Technologies for Water Treatment and Reuse. Ind. Eng. Chem. Res. 2014, 53 (29), 11571–11592.
(40) Corcoran, J.; Winter, M. J.; Tyler, C. R. Pharmaceuticals in the Aquatic Environment: A Critical Review of the Evidence for Health Effects in Fish. Crit. Rev. Toxicol. 2010, 40 (4), 287–304. https://doi.org/10.3109/10408440903373590.
(41) Fatta-Kassinos, D.; Meric, S.; Nikolaou, A. Pharmaceutical Residues in Environmental Waters and Wastewater: Current State of Knowledge and Future Research. Anal. Bioanal. Chem. 2011, 399, 251–275. https://doi.org/10.1007/s00216-010-4300-9.
(42) Watkinson, A. J.; Murby, E. J.; Kolpin, D. W.; Costanzo, S. D. The Occurrence of Antibiotics in an Urban Watershed: From Wastewater to Drinking Water. Sci. Total Environ. 2009, 407 (8), 2711–2723. https://doi.org/10.1016/j.scitotenv.2008.11.059.
(43) Watkinson, A. J.; Murby, E. J.; Costanzo, S. D. Removal of Antibiotics in Conventional and Advanced Wastewater Treatment: Implications for Environmental Discharge and Wastewater Recycling. Water Res. 2007, 41 (18), 4164–4176. https://doi.org/10.1016/j.watres.2007.04.005.
(44) Lin, A. Y.; Yu, T.; Lin, C. Chemosphere Pharmaceutical Contamination in Residential, Industrial, and Agricultural Waste Streams: Risk to Aqueous Environments in Taiwan. Chemosphere 2008, 74 (1), 131–141. https://doi.org/10.1016/j.chemosphere.2008.08.027.
(45) Miao, X.-S.; Bishay, F.; Chen, M.; Metcalfe, C. D. Occurrence of Antimicrobials in the Final Effluents of Wastewater Treatment Plants in Canada. Environ. Sci. Technol. 2004, 38 (13), 3533–3541.
(46) Lin, A. Y.-C.; Yu, T.-H.; Lateef, S. K. Removal of Pharmaceuticals in Secondary Wastewater Treatment Processes in Taiwan. J. Hazard. Mater. 2009, 167 (1–3), 1163–1169. https://doi.org/10.1016/j.jhazmat.2009.01.108.
(47) Li, B.; Zhang, T.; Xu, Z.; Fang, H. H. P. Rapid Analysis of 21 Antibiotics of Multiple Classes in Municipal Wastewater Using Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chim. Acta 2009, 645 (1–2), 64–72. https://doi.org/10.1016/j.aca.2009.04.042.
(48) Duong, H. A.; Pham, N. H.; Nguyen, H. T.; Hoang, T. T.; Pham, H. V.; Pham, V. C.; Berg, M.; Giger, W.; Alder, A. C. Occurrence, Fate and Antibiotic Resistance of Fluoroquinolone Antibacterials in Hospital Wastewaters In Hanoi, Vietnam. Chemosphere 2008, 72 (6), 968–973. https://doi.org/10.1016/j.chemosphere.2008.03.009.
(49) Minh, T. B.; Leung, H. W.; Loi, I. H.; Chan, W. H.; So, M. K.; Mao, J. Q.; Choi, D.; Lam, J. C. W.; Zheng, G.; Martin, M.; Lee, J. H. W.; Lam, P. K. S.; Richardson, B. J. Antibiotics in the Hong Kong Metropolitan Area: Ubiquitous Distribution and Fate in Victoria Harbour. Mar. Pollut. Bull. 2009, 58 (7), 1052–1062. https://doi.org/10.1016/j.marpolbul.2009.02.004.
(50) Langford, K. H.; Thomas, K. V. Determination of Pharmaceutical Compounds in Hospital Effluents and Their Contribution to Wastewater Treatment Works. Environ. Int. 2009, 35 (5), 766–770. https://doi.org/10.1016/j.envint.2009.02.007.
(51) Gómez, M. J.; Martínez Bueno, M. J.; Lacorte, S.; Fernández-Alba, A. R.; Agüera, A. Pilot Survey Monitoring Pharmaceuticals and Related Compounds in a Sewage Treatment Plant Located on the Mediterranean Coast. Chemosphere 2007, 66 (6), 993–1002. https://doi.org/10.1016/j.chemosphere.2006.07.051.
(52) Castiglioni, S.; Bagnati, R.; Fanelli, R.; Pomati, F.; Calamari, D.; Zuccato, E. Removal of Pharmaceuticals in Sewage Treatment Plants in Italy. Environ. Sci. Technol. 2006, 40 (1), 357–363. https://doi.org/10.1021/es050991m.
(53) Clara, M.; Strenn, B.; Kreuzinger, N. Carbamazepine as a Possible Anthropogenic Marker In the Aquatic Environment Investigations on the Behaviour of Carbamazepine in Wastewater Treatment and During Groundwater Infiltration. Water Res. 2004, 38 (4), 947–954. https://doi.org/10.1016/j.watres.2003.10.058.
(54) Angeles, L. F.; Mullen, R. A.; Huang, I. J.; Wilson, C.; Khunjar, W.; Sirotkin, H. I.; McElroy, A. E.; Aga, D. S. Assessing Pharmaceutical Removal and Reduction in Toxicity Provided by Advanced Wastewater Treatment Systems. Environ. Sci. Water Res. Technol. 2020, 6 (1), 62–77. https://doi.org/10.1039/c9ew00559e.
(55) Weismann, K. Neurosyphilis, or Chronic Heavy Metal Poisoning: Karen Blixen’s Lifelong Disease. Sex. Transm. Dis. 1995, 22 (3), 137–144. https://doi.org/10.1097/00007435-199505000-00001.
(56) McQuitty, R. J. Metal-Based Drugs. Sci. Prog. 2014, 97 (1), 1–19. https://doi.org/10.3184/003685014X13898980185076.
(57) Boros, E.; Dyson, P. J.; Gasser, G. Classification of Metal-Based Drugs According to Their Mechanisms of Action. Chem 2020, 6 (1), 41–60. https://doi.org/10.1016/j.chempr.2019.10.013.
(58) Cisplatin - Chemistry and Biochemistry of a Leading Anticancer Drug; Lippert, B., Ed.; Wiley-VCH: Weinheim, Germany, 1999. https://doi.org/10.1016/B978-0-12-386454-3.00288-8.
(59) Benvenuto, D.; Giovannetti, M.; Ciccozzi, A.; Spoto, S.; Angeletti, S.; Ciccozzi, M. Gold(I) NHC Complexes: Antiproliferative Activity, Cellular Uptake, Inhibition of Mammalian and Bacterial Thioredoxin Reductases, and Gram-Positive Directed Antibacterial Effects. Chem. - A Eur. J. 2016, 23 (8), 1869–1880.
(60) Gunatilleke, S. S.; Barrios, A. M. Tuning the Au(I)-Mediated Inhibition of Cathepsin B Through Ligand Substitutions. J. Inorg. Biochem. 2008, 102 (3), 555–563. https://doi.org/10.1016/j.jinorgbio.2007.10.019.
(61) Mjos, K. D.; Orvig, C. Metallodrugs in Medicinal Inorganic Chemistry. Chem. Rev. 2014, 114 (8), 4540–4563. https://doi.org/10.1021/cr400460s.
(62) Monro, S.; Colón, K. L.; Yin, H.; Roque, J.; Konda, P.; Gujar, S.; Thummel, R. P.; Lilge, L.; Cameron, C. G.; McFarland, S. A. Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433. Chem. Rev. 2019, 119 (2), 797–828. https://doi.org/10.1021/acs.chemrev.8b00211.
(63) Okamoto, Y.; Kojima, R.; Schwizer, F.; Bartolami, E.; Heinisch, T.; Matile, S.; Fussenegger, M.; Ward, T. R. A Cell-Penetrating Artificial Metalloenzyme Regulates a Gene Switch in a Designer Mammalian Cell. Nat. Commun. 2018, 9 (1), 1943. https://doi.org/10.1038/s41467-018-04440-0.
(64) Boros, E.; Packard, A. B. Radioactive Transition Metals for Imaging and Therapy. Chem. Rev. 2019, 119 (2), 870–901. https://doi.org/10.1021/acs.chemrev.8b00281.
(65) Kostelnik, T. I.; Orvig, C. Radioactive Main Group and Rare Earth Metals for Imaging and Therapy. Chem. Rev. 2019, 119 (2), 902–956. https://doi.org/10.1021/acs.chemrev.8b00294.
(66) Lauffer, R. B. Paramagnetic Metal Complexes as Water Proton Relaxation Agents for NMR Imaging: Theory and Design. Chem. Rev. 1987, 87 (5), 901–927. https://doi.org/10.1021/cr00081a003.
(67) Rogosnitzky, M.; Branch, S. Gadolinium-Based Contrast Agent Toxicity: A Review of Known and Proposed Mechanisms. BioMetals 2016, 29, 365–376. https://doi.org/10.1007/s10534-016-9931-7.
(68) Roder, C.; Thomson, M. J. Auranofin: Repurposing an Old Drug for a Golden New Age. Drugs R D 2015, 15 (1), 13–20. https://doi.org/10.1007/s40268-015-0083-y.
(69) Dasari, S.; Bernard Tchounwou, P. Cisplatin in Cancer Therapy: Molecular Mechanisms of Action. Eur. J. Pharmacol. 2014, 740, 364–378. https://doi.org/10.1016/j.ejphar.2014.07.025.
(70) Chemocare.com. Arsenic Trioxide http://chemocare.com/chemotherapy/drug-info/arsenic-trioxide.aspx (accessed Sep 18, 2018).
(71) Clarkson, T. W. Inorganic and Organometal Pesticides. In Handbook of Pesticide Toxicology Vol. 2; Krieger, R. I., Ed.; Academic Press: San Diego, CA, USA, 2001; pp 1357–1428. https://doi.org/10.1016/b978-012426260-7/50064-1.
(72) Cuppers, B. N.; Schaefer, C. Vaccines and Immunoglobulins. In Drugs During Pregnancy and Lactation: Treatment Options and Risk Assessment; Schaefer, C., Peters, P., Miller, R. K., Eds.; Elsevier: London, UK, 2015; pp 177–192. https://doi.org/10.1016/B978-0-12-408078-2.00008-1.
(73) Holme, M. R.; Sharman, T. Sodium Nitroprusside. [Updated 2022 May 24]. In: StatPearls [Internet]. StatPearls Publishing 2022.
(74) Butler, A. R.; Glidewell, C. Recent Chemical Studies of Sodium Nitroprusside Relevant to Its Hypotensive Action. Chem. Soc. Rev. 1987, 16, 361–380. https://doi.org/10.1039/CS9871600361.
(75) Giorgi, H.; Ammerman, J.; Briffaux, J. P.; Fretellier, N.; Corot, C.; Bourrinet, P. Non-Clinical Safety Assessment of Gadoterate Meglumine (Dotarem®) in Neonatal and Juvenile Rats. Regul. Toxicol. Pharmacol. 2015, 73 (3), 960–970. https://doi.org/10.1016/j.yrtph.2015.09.018.
(76) Helmig, E. G.; Fettig, J. D.; Cordone, L.; Schoenberg, T. H.; DeMarco, M. J.; Rominder, P. S. S. API Removal from Pharmaceutical Manufacturing Wastewater - Results of Process Development, Pilot Testing and Scale-Up. Wyeth Technical Paper. 2005, pp 207–226. https://doi.org/10.2175/193864705783867594.
(77) Roche. Roche Position on Pharmaceuticals in the Environment. 2011, pp 1–5.
(78) Deegan, A. M.; Shaik, B.; Nolan, K.; Urell, K.; Oelgemöller, M.; Tobin, J.; Morrissey, A. Treatment Options for Wastewater Effluents from Pharmaceutical Companies. Int. J. Environ. Sci. Technol. 2011, 8 (3), 649–666. https://doi.org/10.1007/BF03326250.
(79) US Drug Enforcement Agency. DEA Brings in Record Number of Unused Pills During 15th Annual National Prescription Drug Take Back Day https://www.dea.gov/divisions/hq/2018/hq050718.shtml (accessed Apr 22, 2018).
(80) Law, A. V.; Sakharkar, P.; Zargarzadeh, A.; Tai, B. W. B.; Hess, K.; Hata, M.; Mireles, R.; Ha, C.; Park, T. J. Taking Stock of Medication Wastage: Unused Medications in US Households. Res. Soc. Adm. Pharm. 2015, 11 (4), 571–578. https://doi.org/10.1016/j.sapharm.2014.10.003.
(81) Zargazadeh, A. H.; Tavakoli, N.; Hassanzadeh, A. A Survey on the Extent of Medication Storage and Wastage in Urban Iranian Households. Clin. Ther. 2005, 27 (6), 960–969. https://doi.org/10.1016/j.clinthera.2005.06.023.
(82) Abou-Auda, H. S. An Economic Assessment of the Extent of Medication Use and Wastage Among Families in Saudi Arabia and Arabian Gulf Countries. Clin. Ther. 2003, 25 (4), 1276–1292. https://doi.org/10.1016/S0149-2918(03)80083-8.
(83) Daughton, C. G. Drugs and the Environment : Stewardship & Sustainability; Las Vegas, NV, 2010.
(84) Gray, R. C. F.; Hogerzeil, H. V.; Prüss, A. M.; Rushbrook, P. Guideline of Safe Disposal of Unused Pharmaceuticals in and After Emergencies; Geneva, 1999.
(85) Bero, L.; Carson, B.; Moller, H.; Hill, S. To Give Is Better Than to Receive: Compliance with WHO Guidelines for Drug Donations during 2000-2008. Bull. World Health Organ. 2010, 88 (12), 922–929. https://doi.org/10.2471/BLT.10.079764.
(86) Benaragama; Fernandopulle, R. The Expectations, The Reality and The Burden of Drug Donations. Colombo 2010, pp 41, 54–55.
(87) Berckmans, P.; Dawans, V.; Schmets, G.; Vandenbergh, D.; Autier, P. Inappropriate Drug-Donation Practices In Bosnia and Herzegovina, 1992 to 1996. N. Engl. J. Med. 1997, 337 (December 18), 1839–1845.
(88) Carter, D. Belgium Sent Nearly Expired Medicines to Ukraine https://www.brusselstimes.com/225671/belgium-sent-nearly-expired-medicines-to-ukraine (accessed Dec 8, 2022).
(89) USD to LKR Historical Chart 2004 https://exchangerates.org/usd/lkr/in-2004 (accessed May 25, 2022).
(90) Pharmaciens Sans Frontières Comité International. Study on Drug Donations in the Province of Aceh in Indonesia. Bordeaux 2005, pp 1–4.
(91) Agence France-Presse. In Indonesia, a Tsunami of Useless Medicines http://www.terradaily.com/2006/060728020734.9kesgdli.html (accessed May 31, 2018).
(92) Hairapetian, A.; Alexanian, A.; Férir, M. C.; Agoudjian, V.; Schmets, G.; Dallemagne, G.; Leva, M. N.; Pinel, J.; Autier, P. Drug Supply in the Aftermath of the 1988 Armenian Earthquake. Lancet 1990, 335 (8702), 1388–1390. https://doi.org/10.1016/0140-6736(90)91256-A.
(93) Ali, H. M.; Homeida, M. M. A.; Abdeen, M. A. E. R. “Drug Dumping” in Donations to Sudan. Lancet 1988, 331 (8584), 538–539.
(94) Offerhaus, L. Russia: Emergency Drugs Aid Goes Awry. Lancet 1992, 339 (8793), 607.
(95) Wallerstein, C. Unusable Medicines “Dumped” on Venezuela. BMJ 2000, 320 (June), 1491.
(96) Pomerantz, J. M. Recycling Expensive Medication: Why Not ? MedGenMed 2004, 6 (2), 1–10.
(97) Allen, M. Wasted medicine: America’s other drug problem https://www.propublica.org/article/americas-other-drug-problem (accessed May 28, 2018).
(98) Glassmeyer, S. T.; Hinchey, E. K.; Boehme, S. E.; Daughton, C. G.; Ruhoy, I. S.; Conerly, O.; Daniels, R. L.; Lauer, L.; McCarthy, M.; Nettesheim, T. G.; Sykes, K.; Thompson, V. G. Disposal Practices for Unwanted Residential Medications in the United States. Environ. Int. 2009, 35 (3), 566–572. https://doi.org/10.1016/j.envint.2008.10.007.
(99) McEachran, A. D.; Shea, D.; Bodnar, W.; Nichols, E. G. Pharmaceutical Occurrence in Groundwater and Surface Waters in Forests Land-Applied with Municipal Wastewater. Environ. Toxicol. Chem. 2016, 35 (4), 898–905. https://doi.org/10.1002/etc.3216.Data.
(100) Deo, R. P. Pharmaceuticals in the Surface Water of the USA: A Review. Curr. Environ. Heal. Reports 2014, 1, 113–122. https://doi.org/10.1007/s40572-014-0015-y.
(101) Chèvre, N. Pharmaceuticals in Surface Waters: Sources, Behavior, Ecological Risk, and Possible Solutions. Case Study of Lake Geneva, Switzerland. Wiley Interdiscip. Rev. Water 2014, 1 (1), 69–86. https://doi.org/10.1002/wat2.1006.
(102) Glassmeyer, S.; Furlong, E.; Kolpin, D.; Cahill, J.; Zaugg, S.; Werner, S. L.; Meyer, M. T.; Kryak, D. D. Transport of Chemical and Microbial Compounds from Known Wastewater Discharges: Potential for Use as Indicators of Human Fecal Contamination. Environ. Sci. Technol. 2005, 39 (14), 5157–5169.
(103) Ashton, D.; Hilton, M.; Thomas, K. V. Investigating the Environmental Transport of Human Pharmaceuticals to Streams in the United Kingdom. Sci. Total Environ. 2004, 333 (1–3), 167–184. https://doi.org/10.1016/j.scitotenv.2004.04.062.
(104) Batt, A. L.; Bruce, I. B.; Aga, D. S. Evaluating the Vulnerability of Surface Waters to Antibiotic Contamination from Varying Wastewater Treatment Plant Discharges. Environ. Pollut. 2006, 142 (2), 295–302. https://doi.org/10.1016/j.envpol.2005.10.010.
(105) Fram, M. S.; Belitz, K. Occurrence and Concentrations of Pharmaceutical Compounds in Groundwater Used for Public Drinking-Water Supply in California. Sci. Total Environ. 2011, 409 (18), 3409–3417. https://doi.org/10.1016/j.scitotenv.2011.05.053.
(106) Scheytt, T.; Mersmann, P.; Leidig, M.; Pekdeger, A.; Heberer, T. Transport of Pharmaceutically Active Compounds in Saturated Laboratory Columns. Ground Water 2004, 42 (5), 767–773. https://doi.org/10.1111/j.1745-6584.2004.tb02730.x.
(107) Verstraeten, I. M.; Fetterman, G. S.; Meyer, M. T.; Bullen, T.; Sebree, S. K. Use of Tracers and Isotopes to Evaluate Vulnerability of Water in Domestic Wells to Septic Waste. Gr. Water Monit. Remediat. 2005, 25 (2), 107–117. https://doi.org/10.1111/j.1745-6592.2005.0015.x.
(108) Stackelberg, P. E.; Gibs, J.; Furlong, E. T.; Meyer, M. T.; Zaugg, S. D.; Lippincott, R. L. Efficiency of Conventional Drinking-Water-Treatment Processes in Removal of Pharmaceuticals and Other Organic Compounds. Sci. Total Environ. 2007, 377 (2–3), 255–272. https://doi.org/10.1016/j.scitotenv.2007.01.095.
(109) Kümmerer, K. Drugs in the Environment: Emission of Drugs, Diagnostic Aids and Disinfectants into Wastewater by Hospitals in Relation to Other Sources - A Review. Chemosphere 2001, 45 (6–7), 957–969. https://doi.org/10.1016/S0045-6535(01)00144-8.
(110) Allen, M. That drug expiration date may be more myth than fact https://www.npr.org/sections/health-shots/2017/07/18/537257884/that-drug-expiration-date-may-be-more-myth-than-fact (accessed May 28, 2018).
(111) Cantrell, L.; Suchard, J. R.; Wu, A.; Gerona, R. R. Stability of Active Ingredients in Long-Expired Prescription Medications. ArchInternMed 2012, 172 (21), 1685–1687. https://doi.org/10.1001/2013.
(112) Lyon, R. C.; Taylor, J. S.; Porter, D. A.; Prasanna, H. R.; Hussain, A. S. Stability Profiles of Drug Products Extended Beyond Labeled Expiration Dates. J. Pharm. Sci. 2006, 95 (7), 1549–1560. https://doi.org/10.1002/jps.
(113) Cantrell, L.; Cantrell, P.; Wen, A.; Gerona, R. R. Epinephrine Concentrations in EpiPens After the Expiration Date. Ann. Intern. Med. 2017, 166 (12), 918–919. https://doi.org/10.7326/L16-0612.
(114) U.S. Food and Drug Administration. Don’t be tempted to use expired medicines https://www.fda.gov/Drugs/ResourcesForYou/SpecialFeatures/ucm481139.htm (accessed Feb 22, 2018).
(115) International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Q7 Good Manufacturing Practice Guidance for Active Pharmaceutical Ingredients, Guidance for Industry. 2016, p 48.
(116) Active Pharmaceutical Ingredient (API) Market to Reach USD 251.3 Billion by 2028 - Powered by Rising Energy Demand | Vantage Market Research https://www.globenewswire.com/en/news-release/2022/08/11/2496885/0/en/Active-Pharmaceutical-Ingredient-API-Market-to-Reach-USD-251-3-Billion-by-2028-Powered-by-Rising-Energy-Demand-Vantage-Market-Research.html (accessed Oct 25, 2022).
(117) Chaudhari, S. P.; Patil, P. S. Pharmaceutical Excipients: A Review. Int. J. Adv. Pharmacy, Biol. Chem. 2012, 1 (1), 21–34.
(118) Haywood, A.; Glass, B. D. Pharmaceutical Excipients – Where Do We Begin? Aust. Prescr. 2011, 34 (4), 112–114.
(119) International Excipients Certification. International Excipients Certification Project: Minimize Risks – Maximize Benefits; London, 2009.
(120) Do, J.; Friščić, T. Mechanochemistry: A Force of Synthesis. ACS Cent. Sci. 2017, 3 (1), 13–19. https://doi.org/10.1021/acscentsci.6b00277.
(121) Friščić, T.; Childs, S. L.; Rizvic, S. A. A.; Jones, W. The Role of Solvent in Mechanochemical and Sonochemical Cocrystal Formation: A Solubility-Based Approach for Predicting Cocrystallisation Outcome. CrystEngComm 2009, 11 (3), 418–426. https://doi.org/10.1039/b810822f.
(122) Wu, Z.; Yang, S.; Wu, W. Application of Temperature Cycling for Crystal Quality Control During Crystallization. CrystEngComm 2016, 18 (13), 2222–2238. https://doi.org/10.1039/c5ce02522b.
(123) Jiang, M.; Zhu, X.; Molaro, M. C.; Rasche, M. L.; Zhang, H.; Chadwick, K.; Raimondo, D. M.; Kim, K. K. K.; Zhou, L.; Zhu, Z.; Wong, M. H.; O’Grady, D.; Hebrault, D.; Tedesco, J.; Braatz, R. D. Modification of Crystal Shape Through Deep Temperature Cycling. Ind. Eng. Chem. Res. 2014, 53 (13), 5325–5336. https://doi.org/10.1021/ie400859d.
(124) Chien, A. T.; Speck, J. S.; Lange, F. F.; Daykin, A. C.; Levi, C. G. Low Temperature/Low Pressure Hydrothermal Synthesis of Barium Titanate : Powder and Heteroepitaxial Thin Films. J. Mater. Res. 1995, 10 (7), 1784–1789.
(125) Eckert, J. O.; Hung-Houston, C. C.; Gersten, B. L.; Lencka, M. M.; Riman, R. E. Kinetics and Mechanisms of Hydrothermal Synthesis of Barium Titanante. J. Am. Ceram. Soc. 1996, 79 (11), 2929–2939.
(126) Kutty, T. R. N.; Vivekanandan, R.; Murugaraj, P. Precipitation of Rutile and Anatase (TiO2) Fine Powders and Their Conversion to MTiO3 (M = Ba, Sr, Ca) by the Hydrothermal Method. Mater. Chem. Phys. 1988, 19 (6), 533–546.
(127) Kholodkova, A. A.; Danchevskaya, M. N.; Ivakin, Y. D.; Muravieva, G. P.; Tyablikov, A. S. Crystalline Barium Titanate Synthesized in Sub- and Supercritical Water. J. Supercrit. Fluids 2016, 117, 194–202. https://doi.org/10.1016/j.supflu.2016.06.018.
(128) Kaneko, S.; Imoto, F. Synthesis of Fine-Grained Barium Titanate by Hydrothermal Reaction. Nippon Kagaku Kaishi 1975, 6 (6), 985–990.
(129) Hertl, W. Kinetics of Barium Titanate Synthesis. J. Am. Ceram. Soc. 1988, 71 (10), 879–883.
(130) Pfaff, G. BaTiO3 Preparation by Reaction of Ba(OH)2. J. Eur. Ceram. Soc. 1991, 8 (1), 35–39.
(131) Derdour, L.; Reckamp, J. M.; Pink, C. Development of a Reactive Slurry Salt Crystallization to Improve Solid Properties and Process Performance and Scalability. Chem. Eng. Res. Des. 2017, 121, 207–218. https://doi.org/10.1016/j.cherd.2017.03.005.
(132) Levenspiel, O. Fluid-Particle Reactions: Kinetics. In Chemical Reaction Engineering, 3rd ed.; John Wiley & Sons: New York, 1999; pp 566–588. https://doi.org/10.1016/0009-2509(80)80138-2.
(133) Yagi, S.; Kunii, D. Studies on Combustion of Carbon Particles in Flames and Fluidized Beds. In 5th Symposium on Combustion; Reinhold, New York, 1955; pp 231–244.
(134) McNaught, A. D.; Wilkinson, A. IUPAC. Compendium of Chemical Terminology (Online Version), 2nd ed.; Blackwell Scientific Publications: Oxford, 1997. https://doi.org/https://doi.org/10.1351/goldbook.
(135) Srisanga, S.; Ter Horst, J. H. Racemic Compound, Conglomerate, or Solid Solution: Phase Diagram Screening of Chiral Compounds. Cryst. Growth Des. 2010, 10 (4), 1808–1812. https://doi.org/10.1021/cg901483v.
(136) Jacques, J.; Collet, A.; Wilen, S. H. Enantiomers, Racemates, and Resolutions. John Wiley & Sons: Canada 1981, pp 3–5, 81, 104–105, 126–128, 173–177, 251–252, 298–2.
(137) Lewis, S. W. Nonchromatographic Separation Techniques. In Encyclopedia of Forensic Sciences; Siegel, J. A., Saukko, P. J., Houck, M. M., Eds.; Elsevier Ltd.: London, 2013; Vol. 3, pp 621–626. https://doi.org/10.1016/B978-0-12-382165-2.00254-3.
(138) Brakel, J. van. Substances: The Ontology of Chemistry. In Philosophy of Chemistry; Woody, A. I., Hendry, R. F., Needham, P., Eds.; Elsevier B.V., 2012; Vol. 6, pp 191–229. https://doi.org/10.1016/B978-0-444-51675-6.50018-9.
(139) Jacques, J.; Collet, A.; Wilen, S. H. H.W. B. Roozeboom, Z. Phys. Chem. 1899, 28, 494, as Cited in Enantiomers, Racemates, and Resolution; John Wiley & Sons: Canada, 1981.
(140) Vantomme, G.; Crassous, J. Pasteur and Chirality: A Story of How Serendipity Favors the Prepared Minds. Chirality 2021, 33 (10), 597–601. https://doi.org/10.1002/chir.23349.
(141) Houllemare-Druot, S.; Coquerel, G. How Far Can an Unstable Racemic Compound Affect the Performances of Preferential Crystallization? Example with (R) and (S)-α-Methylbenzylamine Chloroacetate. J. Chem. Soc. Perkin Trans. 2 1998, No. 10, 2211–2220. https://doi.org/10.1039/a805070h.
(142) Lam, S.; Malikin, G. Strategy Combining Chiral Chromatography with Β‐Cyclodextrin and Stereospecific Enzyme Reaction Detection with Hydroxysteroid Dehydrogenases for Resolving Steroid Epimers. Chirality 1992, 4 (6), 395–399. https://doi.org/10.1002/chir.530040611.
(143) Drayer, D. E. Pharmacodynamic and Pharmacokinetic Differences Between Drug Enantiomers in Humans: An Overview. Clin. Pharmacol. Ther. 1986, 40 (2), 125–133. https://doi.org/10.1038/clpt.1986.150.
(144) Tokunaga, E.; Yamamoto, T.; Ito, E.; Shibata, N. Understanding the Thalidomide Chirality in Biological Processes by the Self-Disproportionation of Enantiomers. Sci. Rep. 2018, 8 (1), 6–12. https://doi.org/10.1038/s41598-018-35457-6.
(145) US Food and Drug Administration. Development of New Stereoisomeric Drugs; 1992.
(146) Stinson, S. C. Chiral Drugs. Chemical & Engineering News. 1992, pp 46–79. https://doi.org/10.1021/cen-v070n039.p046.
(147) Ghosh, S.; Badruddoza, A. Z. M.; Uddin, M. S.; Hidajat, K. Adsorption of Chiral Aromatic Amino Acids onto Carboxymethyl-β-Cyclodextrin Bonded Fe3O4/SiO2 Core-Shell Nanoparticles. J. Colloid Interface Sci. 2011, 354 (2), 483–492. https://doi.org/10.1016/j.jcis.2010.11.060.
(148) Peng, Y.; Gong, T.; Zhang, K.; Lin, X.; Liu, Y.; Jiang, J.; Cui, Y. Engineering Chiral Porous Metal-Organic Frameworks for Enantioselective Adsorption and Separation. Nat. Commun. 2014, 5 (1), 4406. https://doi.org/10.1038/ncomms5406.
(149) Okamoto, Y.; Ikai, T. Chiral HPLC for Efficient Resolution of Enantiomers. Chem. Soc. Rev. 2008, 37 (12), 2593–2608. https://doi.org/10.1039/b808881k.
(150) Dotsevi, G.; Sogah, Y.; Cram, D. J. Chromatographic Optical Resolution through Chiral Complexation of Amino Ester Salts by a Host Covalently Bound to Silica Gel. J. Am. Chem. Soc. 1975, 97 (5), 1259–1261. https://doi.org/https://doi.org/10.1021/ja00838a059.
(151) Hitchin, J. R. The Scale Up of Chemical Reactions. Nat. Rev. Methods Prim. 2022, 2, 28. https://doi.org/10.1038/s43586-022-00116-8.
(152) Shiau, L. D. Product Yield, Purity, and Effective Distribution Coefficient in Stripping Crystallization of R-2-Amino-1-Phenylethanol from the Enantiomer Mixture. Cryst. Growth Des. 2020, 20 (2), 1328–1336. https://doi.org/10.1021/acs.cgd.9b01614.
(153) Shiau, L. D. Chiral Separation of the Phenylglycinol Enantiomers by Stripping Crystallization. Molecules 2018, 23 (11), 2901. https://doi.org/10.3390/molecules23112901.
(154) Shiau, L. D.; Liu, K. F.; Hsu, Y. C. Chiral Purification of S-Ibuprofen from Ibuprofen Enantiomers by Stripping Crystallization. Chem. Eng. Res. Des. 2017, 117, 301–308. https://doi.org/10.1016/j.cherd.2016.10.019.
(155) Kozma, D. Optical Resolutions via Diastereomeric Salt Formation; CRC Press, 2002.
(156) Dale, J. A.; Mosher, H. S. Nuclear Magnetic Resonance Enantiomer Regents. Configurational Correlations via Nuclear Magnetic Resonance Chemical Shifts of Diastereomeric Mandelate, O-Methylmandelate, and α-Methoxy-α-Trifluoromethylphenylacetate (MTPA) Esters. J. Am. Chem. Soc. 1973, 95 (2), 512–519. https://doi.org/10.1021/ja00783a034.
(157) Dale, J. A.; Dull, D. L.; Mosher, H. S. α-Methoxy-α-Trifluoromethylphenylacetic Acid, a Versatile Reagent for the Determination of Enantiomeric Composition of Alcohols and Amines. J. Org. Chem. 1969, 34 (9), 2543–2549. https://doi.org/10.1021/jo01261a013.
(158) Sánchez-Guadarrama, O.; Mendoza-Navarro, F.; Cedillo-Cruz, A.; Jung-Cook, H.; Arenas-García, J. I.; Delgado-Díaz, A.; Herrera-Ruiz, D.; Morales-Rojas, H.; Höpfl, H. Chiral Resolution of RS-Praziquantel via Diastereomeric Co-Crystal Pair Formation with l -Malic Acid. Cryst. Growth Des. 2016, 16 (1), 307–314. https://doi.org/10.1021/acs.cgd.5b01254.
(159) Marc, L.; Guillemer, S.; Schneider, J. M.; Coquerel, G. Continuous Chiral Resolution of Racemic Ibuprofen by Diastereomeric Salt Formation in a Couette-Taylor Crystallizer. Chem. Eng. Res. Des. 2022, 178, 95–110. https://doi.org/10.1016/j.cherd.2021.12.016.
(160) Bánsághi, G.; Székely, E.; Sevillano, D. M.; Juvancz, Z.; Simándi, B. Diastereomer Salt Formation of Ibuprofen in Supercritical Carbon Dioxide. J. Supercrit. Fluids 2012, 69, 113–116. https://doi.org/10.1016/j.supflu.2012.05.016.
(161) Tung, H.-H.; Waterson, S.; Reynolds, S. D. Formation and Resolution of Ibuprofen Lysinate. US Pat., 4,994,604, 1991.
(162) Simon, M.; Donnellan, P.; Glennon, B.; Jones, R. C. Resolution via Diastereomeric Salt Crystallization of Ibuprofen Lysine: Binary and Ternary Phase Diagram Studies. Chem. Eng. Technol. 2018, 41 (5), 921–927. https://doi.org/10.1002/ceat.201700427.
(163) Szeleczky, Z.; Bagi, P.; Pálovics, E.; Faigl, F.; Fogassy, E. The PH-Dependency of Diastereomeric Salt Resolutions with Amphoteric Resolving Agents. J. Chem. Res. 2016, 40 (1), 21–25. https://doi.org/10.3184/174751916X14495720611388.
(164) Martín, A.; Cocero, M. J. Separation of Enantiomers by Diastereomeric Salt Formation and Precipitation in Supercritical Carbon Dioxide: Application to the Resolution of Mandelic Acid. J. Supercrit. Fluids 2007, 40 (1), 67–73. https://doi.org/10.1016/j.supflu.2006.03.018.
(165) West, B. D.; Preis, S.; Schroeder, C. H.; Link, K. P. Studies on the 4-Hydroxycoumarins. XVII.1a The Resolution and Absolute Configuration of Warfarin1b. J. Am. Chem. Soc. 1961, 83 (12), 2676–2679. https://doi.org/https://doi.org/10.1021/ja01473a020.
(166) Yadav, R.; Shaikh, Z. G.; Ali, S. A. N.; Merwade, A.; Siddiqui Mohammad, J. M. Processes for the Preparation of Epinephrine. World Intellectual Property Organization, WO 2009/004593, 2009.
(167) Ebbers, E. J.; Ariaans, G. J. A.; Houbiers, J. P. M.; Bruggink, A.; Zwanenburg, B. Controlled Racemization of Optically Active Organic Compounds: Prospects for Asymmetric Transformation. Tetrahedron 1997, 53 (28), 9417–9476. https://doi.org/https://doi.org/10.1016/S0040-4020(97)00324-4.
(168) Harmsen, B.; Leyssens, T. Enabling Enantiopurity: Combining Racemization and Dual-Drug Co-Crystal Resolution. Cryst. Growth Des. 2018, 18 (6), 3654–3660. https://doi.org/10.1021/acs.cgd.8b00438.
(169) Challener, C. A. Chiral Resolution With and Without Resolving Agents. Pharm. Technol. 2015, 39 (2), 40–41.
(170) Martin, S.; Piergentili, D. Recovery and Recycling of Chiral Tartaric Acid Resolving Agents. US Pat., 7,838,700 B2, 2010.
(171) Schloemer, G. C.; Lodewijk, E.; Withers, G. P. Resolution of Ibuprofen. US Patent No. US5621140A, 1997.
(172) Mokhtari, J.; Azarnoosh, S.; Karimian, K. Resolution of Racemic Mixtures by Phase Transition of PEGylated Resolving Agents. ACS Omega 2017, 2 (12), 8717–8722. https://doi.org/10.1021/acsomega.7b01070.
(173) Potthast, H.; Dressman, J. B.; Junginger, H. E.; Midha, K. K.; Oeser, H.; Shah, V. P.; Vogelpoel, H.; Barends, D. M. Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Ibuprofen. J. Pharm. Sci. 2005, 94 (10), 2121–2131. https://doi.org/10.1002/jps.20444.
(174) Evans, A. M. Comparative Pharmacology of S(+)-Ibuprofen and (RS)-Ibuprofen. Clin. Rheumatol. 2001, 20 (Suppl 1), 9–14. https://doi.org/https://doi.org/10.1007/BF03342662.
(175) Bhattacharya, A.; Murphy, D. Temperature Selective Diastereo-Recognition (TSD): Enantiomeric Ibuprofen via Environmentally Benign Selective Crystallization. Org. Process Res. Dev. 2003, 7 (5), 717–722. https://doi.org/10.1021/op030203i.
(176) Lam, W. H.; Ng, K. M. Diastereomeric Salt Crystallization Synthesis for Chiral Resolution of Ibuprofen. AIChE J. 2007, 53 (2), 429–437. https://doi.org/https://doi.org/10.1002/aic.11087.
(177) Trung, T. Q.; Kim, J. M.; Kim, K. H. Preparative Method of R-(-)-Ibuprofen by Diastereomer Crystallization. Arch. Pharm. Res. 2006, 29 (1), 108–111. https://doi.org/10.1007/BF02977477.
(178) Manimaran, T.; Impastato, F. J. Preparation of Optically Active Aliphatic Carboxylic Acids. US Pat., 5,015,764, 1991.
(179) Marc, L.; Lopes, C.; Schneider, J. M.; Sanselme, M.; Coquerel, G. Impact of a Partial Solid Solution and Water Molecules on the Formation of Fibrous Crystals and Fluid Inclusions. Crystals 2021, 11 (10), 1–13. https://doi.org/10.3390/cryst11101188.
(180) Ebbers, E. J.; Plum, B. J. M.; Ariaans, G. J. A.; Kaptein, B.; Broxterman, Q. B.; Bruggink, A.; Zwanenburg, B. New Resolving Bases for Ibuprofen and Mandelic Acid: Qualification by Binary Phase Diagrams. Tetrahedron Asymmetry 1997, 8 (24), 4047–4057. https://doi.org/10.1016/S0957-4166(97)00557-0.
(181) Shankland, N.; Wilson, C. C.; Florence, A. J.; Cox, P. J. Refinement of Ibuprofen at 100 K by Single-Crystal Pulsed Neutron Diffraction. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1997, 53, 951–954. https://doi.org/10.1107/S0108270197003193.
(182) Hansen, L. K.; Perlovich, G. L.; Bauer-Brandl, A. Redetermination and H-Atom Refinement of (S)-(+)-Ibuprofen. Acta Crystallogr. Sect. E Struct. Reports Online 2003, 59 (9), 1357–1358. https://doi.org/10.1107/S160053680301451X.
(183) Lemmerer, A.; Bourne, S. A.; Caira, M. R.; Cotton, J.; Hendricks, U.; Peinke, L. C.; Trollope, L. Incorporating Active Pharmaceutical Ingredients Into a Molecular Salt Using a Chiral Counterion. CrystEngComm 2010, 12 (11), 3634–3641. https://doi.org/10.1039/c0ce00043d.
(184) Busing, W. R.; Levy, H. A. Neutron Diffraction Study of Calcium Hydroxide. J. Chem. Phys. 1957, 26 (3), 563–568. https://doi.org/https://doi.org/10.1063/1.1743345.
(185) Wooster, W. A. On the Crystal Structure of Gypsum, CaSO4•2H2O. Zeitschrift für Krist. - Cryst. Mater. 1973, 94 (1–6), 375–396. https://doi.org/https://doi.org/10.1524/zkri.1936.94.1.375.
(186) Phenomenex Inc. Ibuprofen on Lux 5µm Cellulose-3 in RP https://www.phenomenex.com/Application/Detail/20310 (accessed Sep 13, 2019).
(187) Colthup, N. B.; Daly, L. H.; Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy, 2nd ed.; Academic Press: New York, 1990. https://doi.org/10.1021/ja01083a063.
(188) Thompson, E.; Warren, R. J.; Eisdorfer, I. B.; Zarembo, J. E. Identification of Primary, Secondary, and Tertiary Pharmaceutical Amines by the Infrared Spectra of Their Salts. J. Pharm. Sci. 1965, 54 (12), 1819–1821. https://doi.org/https://doi.org/10.1002/jps.2600541231.
(189) Long, B.; Yang, H.; Ding, Y. Impact of Seed Loading Ratio on the Growth Kinetics of Mono-Ammonium Phosphate Under Isothermal Batch Crystallization. Korean J. Chem. Eng. 2016, 33, 623–628. https://doi.org/10.1007/s11814-015-0173-0.
(190) Wong, S. W.; Georgakis, C.; Botsaris, G. D.; Saranteas, K.; Bakale, R. Online Estimation and Monitoring of Diastereomeric Resolution Using FBRM, ATR-FTIR, and Raman Spectroscopy. Ind. Eng. Chem. Res. 2008, 47 (15), 5576–5584. https://doi.org/10.1021/ie071179q.
(191) Shahid, M.; Faure, C.; Ottoboni, S.; Lue, L.; Price, C. Employing Constant Rate Filtration To Assess Active Pharmaceutical Ingredient Washing Efficiency. Org. Process Res. Dev. 2022, 26 (1), 97–110. https://doi.org/10.1021/acs.oprd.1c00272.
(192) Sheldon, R. A. The E Factor 25 Years On: The Rise of Green Chemistry and Sustainability. Green Chem. 2017, 19, 18–43. https://doi.org/10.1039/c6gc02157c.
(193) Gurnari, C.; De Bellis, E.; Divona, M.; Ottone, T.; Lavorgna, S.; Voso, M. T. When Poisons Cure: The Case of Arsenic in Acute Promyelocytic Leukemia. Chemotherapy 2020, 64 (5–6), 238–247. https://doi.org/10.1159/000507805.
(194) World Health Organization Model List of Essential Medicines, 21st List. World Health Organization: Geneva 2019, p 27.
(195) Reuber, H.; Lux, F. Veterinary Arsenicals. Iowa State Univ. Vet. 1965, 28 (1), 4.
(196) Anjaneyulu, Y. Conservation and Management Plans for Remediation of Khazipally Chevuru. Final Technical Report; as cited in K. C. Sekhar, N. S. Chary, C. T. Kamala, J. V. Rao, V. Balaram and Y. Anjaneyulu, Environ. Int., 2003, 29 (5), 601–611, 1999.
(197) Pratama, D. E.; Yang, C. L.; Chen, Y. Y.; Lin, C. C.; Hu, Y.; Lee, T. Quick-Fix Agarose Beads Impregnated with Hydrous Ferric Oxide for As(III) Species Removal from Pharmaceutical Wastewater. Sep. Sci. Technol. 2022, 57 (7), 1013–1029. https://doi.org/10.1080/01496395.2021.1962350.
(198) United States Environmental Protection Agency. Arsenic Treatment Technology Evaluation Handbook for Small Systems. 2003, p iv.
(199) Jang, M.; Min, S. H.; Kim, T. H.; Park, J. K. Removal of Arsenite and Arsenate Using Hydrous Ferric Oxide Incorporated into Naturally Occurring Porous Diatomite. Environ. Sci. Technol. 2006, 40 (5), 1636–1643. https://doi.org/10.1021/es051501t.
(200) Ociński, D.; Mazur, P. Highly Efficient Arsenic Sorbent Based on Residual from Water Deironing – Sorption Mechanisms and Column Studies. J. Hazard. Mater. 2020, 382 (June 2019), 121062. https://doi.org/10.1016/j.jhazmat.2019.121062.
(201) Baskan, M. B.; Pala, A. Batch and Fixed-Bed Column Studies of Arsenic Adsorption on the Natural and Modified Clinoptilolite. Water. Air. Soil Pollut. 2014, 225, 1798. https://doi.org/10.1007/s11270-013-1798-4.
(202) Chen, W.; Parette, R.; Zou, J.; Cannon, F. S.; Dempsey, B. A. Arsenic Removal by Iron-Modified Activated Carbon. Water Res. 2007, 41 (9), 1851–1858. https://doi.org/10.1016/j.watres.2007.01.052.
(203) Vaishya, R. C.; Gupta, S. K. Arsenic Removal from Groundwater by Iron Impregnated Sand. J. Environ. Eng. 2003, 129 (1), 89–92. https://doi.org/10.1061/(asce)0733-9372(2003)129:1(89).
(204) Zouboulis, A. I.; Katsoyiannis, I. A. Arsenic Removal Using Iron Oxide Loaded Alginate Beads. Ind. Eng. Chem. Res. 2002, 41 (24), 6149–6155. https://doi.org/10.1021/ie0203835.
(205) Hasan, S.; Ghosh, A.; Race, K.; Schreiber, R.; Prelas, M. Dispersion of FeOOH on Chitosan Matrix for Simultaneous Removal of As(III) and As(V) from Drinking Water. Sep. Sci. Technol. 2014, 49 (18), 2863–2877. https://doi.org/10.1080/01496395.2014.949774.
(206) Manna, B. R.; Dey, S.; Debnath, S.; Ghosh, U. C. Removal of Arsenic from Groundwater Using Crystalline Hydrous Ferric Oxide (CHFO). Water Qual. Res. J. Canada 2003, 38 (1), 193–210. https://doi.org/10.2166/wqrj.2003.013.
(207) Hesami, F.; Bina, B.; Ebrahimi, A.; Amin, M. M. Arsenic Removal by Coagulation Using Ferric Chloride and Chitosan from Water. Int. J. Environ. Health Eng. 2013, 1 (9), 1–6. https://doi.org/10.4103/2277-9183.110170.
(208) Ghosh, B.; Das, M. C.; Gangopadhyay, A. K.; Das, T. B.; Singh, K.; Lat, S.; Mitra, S.; Ansari, S. H.; Goswami, T. K.; Chakraborty, S. K.; Banerjee, N. N. Removal of Arsenic from Water by Coagulation Treatment Using Iron and Magnesium Salt. Indian J. Chem. Technol. 2003, 10, 87–95.
(209) Harper, T. R.; Kingham, N. W. Removal of Arsenic from Wastewater Using Chemical Precipitation Methods. Water Environ. Res. 1992, 64 (3), 200–203. https://doi.org/10.2175/wer.64.3.2.
(210) Filippou, D.; Demopoulos, G. P. Arsenic Immobilization by Controlled Scorodite Precipitation. JOM 1997, 49, 52–55. https://doi.org/10.1007/s11837-997-0034-3.
(211) Yang, T.; Hu, B.; Liu, W.; Zhang, D.; Chen, L. A Novel Process for the Treatment of Copper-Smelting Waste Acid with a High Arsenic Concentration. JOM 2018, 70 (10), 2022–2026. https://doi.org/10.1007/s11837-018-2996-8.
(212) Caetano, M. L.; Ciminelli, V. S. T.; Rocha, S. D. F.; Spitale, M. C.; Caldeira, C. L. Batch and Continuous Precipitation of Scorodite from Dilute Industrial Solutions. Hydrometallurgy 2009, 95 (1–2), 44–52. https://doi.org/10.1016/j.hydromet.2008.04.010.
(213) Waypa, J. J.; Elimelech, M.; Hering, J. G. Arsenic Removal by RO and NF Membranes. J. / Am. Water Work. Assoc. 1997, 89 (10), 102–114. https://doi.org/10.1002/j.1551-8833.1997.tb08309.x.
(214) Elcik, H.; Celik, S. O.; Cakmakci, M.; Özkaya, B. Performance of Nanofiltration and Reverse Osmosis Membranes for Arsenic Removal from Drinking Water. Desalin. Water Treat. 2016, 57 (43), 20422–20429. https://doi.org/10.1080/19443994.2015.1111812.
(215) Figoli, A.; Cassano, A.; Criscuoli, A.; Mozumder, M. S. I.; Uddin, M. T.; Islam, M. A.; Drioli, E. Influence of Operating Parameters on the Arsenic Removal by Nanofiltration. Water Res. 2010, 44 (1), 97–104. https://doi.org/10.1016/j.watres.2009.09.007.
(216) Huo, L.; Zeng, X.; Su, S.; Bai, L.; Wang, Y. Enhanced Removal of As (V) from Aqueous Solution Using Modified Hydrous Ferric Oxide Nanoparticles. Sci. Rep. 2017, 7 (V), 1–12. https://doi.org/10.1038/srep40765.
(217) Sigdel, A.; Park, J.; Kwak, H.; Park, P. Arsenic Removal from Aqueous Solutions by Adsorption onto Hydrous Iron Oxide-Impregnated Alginate Beads. J. Ind. Eng. Chem. 2016, 35, 277–286. https://doi.org/10.1016/j.jiec.2016.01.005.
(218) Kulp, L. J.; Trites, A. F. Differential Thermal Analysis of Natural Hydrous Ferric Oxides. Am. Mineral. 1951, 36 (1–2), 23–44.
(219) Streat, M.; Hellgardt, K.; Newton, N. L. R. Hydrous Ferric Oxide as an Adsorbent in Water Treatment. Part 1. Preparation and Physical Characterization. Process Saf. Environ. Prot. 2008, 86 (1), 1–9. https://doi.org/10.1016/j.psep.2007.10.007.
(220) Dwyer, R. F.; Birdsail, C. M. Process for the Preparation of Hydrous Ferric Oxide. US3132000, 1964.
(221) Sigdel, A.; Lim, J.; Park, J.; Kwak, H.; Min, S.; Kim, K.; Lee, H.; Nahm, C. H.; Park, P. K. Immobilization of Hydrous Iron Oxides in Porous Alginate Beads for Arsenic Removal from Water. Environ. Sci. Water Res. Technol. 2018, 4 (8), 1114–1123. https://doi.org/10.1039/c8ew00084k.
(222) Pan, B.; Qiu, H.; Pan, B.; Nie, G.; Xiao, L.; Lv, L.; Zhang, W.; Zhang, Q.; Zheng, S. Highly Efficient Removal of Heavy Metals by Polymer-Supported Nanosized Hydrated Fe (III) Oxides : Behavior and XPS Study. Water Res. 2010, 44 (3), 815–824. https://doi.org/10.1016/j.watres.2009.10.027.
(223) Zhang, Y.; Li, Z. Heavy Metals Removal Using Hydrogel-Supported Nanosized Hydrous Ferric Oxide: Synthesis, Characterization, and Mechanism. Sci. Total Environ. 2017, 580, 776–786. https://doi.org/10.1016/j.scitotenv.2016.12.024.
(224) Sogias, I. A.; Khutoryanskiy, V. V; Williams, A. C. Exploring the Factors Affecting the Solubility of Chitosan in Water. Macromol. Chem. Phys. 2010, 211 (4), 426–433. https://doi.org/10.1002/macp.200900385.
(225) Tako, M.; Tamaki, Y.; Teruya, T.; Takeda, Y. The Principles of Starch Gelatinization and Retrogradation. Food Nutr. Sci. 2014, 5 (3), 280–291. https://doi.org/10.4236/fns.2014.53035.
(226) Draget, K. I.; Skjåk-Bræk, G.; Stokke, B. T. Similarities and Differences between Alginic Acid Gels and Ionically Crosslinked Alginate Gels. Food Hydrocoll. 2006, 20 (2–3), 170–175. https://doi.org/10.1016/j.foodhyd.2004.03.009.
(227) Henderson, G. V. S.; Campbell, D. O.; Kuzmicz, V.; Sperling, L. H. Gelatin as a Physically Crosslinked Elastomer. J. Chem. Educ. 1985, 62 (3), 269–270. https://doi.org/10.1021/ed062p269.
(228) Sperling, L. H. Introduction to Physical Polymer Science. 4th ed. John Wiley & Sons: Hoboken, NJ 2006, pp 447, 460, 498. https://doi.org/10.1016/0923-1137(93)90096-x.
(229) Subhash, G.; Liu, Q.; Moore, D. F.; Ifju, P. G.; Haile, M. A. Concentration Dependence of Tensile Behavior in Agarose Gel Using Digital Image Correlation. Exp. Mech. 2011, 51, 255–262. https://doi.org/10.1007/s11340-010-9354-2.
(230) Gonzalez-Contreras, P.; Gerrits-Benneheij, I.; Weijma, J.; Buisman, C. J. N. HPLC Inorganic Arsenic Speciation Analysis of Samples Containing High Sulfuric Acid and Iron Levels. Toxicol. Environ. Chem. 2011, 93 (3), 415–423. https://doi.org/10.1080/02772248.2010.540245.
(231) Wang, J.; Guo, X. Adsorption Kinetic Models: Physical Meanings, Applications, and Solving Methods. J. Hazard. Mater. 2020, 390, 122156. https://doi.org/10.1016/j.jhazmat.2020.122156.
(232) Wang, J.; Guo, X. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere 2020, 258, 127279. https://doi.org/10.1016/j.chemosphere.2020.127279.
(233) Hu, Q.; Zhang, Z. Application of Dubinin–Radushkevich Isotherm Model at the Solid/Solution Interface: A Theoretical Analysis. J. Mol. Liq. 2019, 277, 646–648. https://doi.org/10.1016/j.molliq.2019.01.005.
(234) Anderson, E.; Story, L. G. Studies on Certain Physical Properties of Arsenic Trioxide in Water Solution. J. Am. Chem. Soc. 1923, 45 (5), 1102–1105. https://doi.org/10.1021/ja01658a002.
(235) Chen, A. S. C.; Sorg, T. J.; Wang, L. Regeneration of Iron-Based Adsorptive Media Used for Removing Arsenic from Groundwater. Water Res. 2015, 77, 85–97. https://doi.org/10.1016/j.watres.2015.03.004.
(236) World Health Organization. Arsenic https://www.who.int/news-room/fact-sheets/detail/arsenic (accessed Apr 7, 2020).
(237) Sharma, G.; Jeevanandam, P. Synthesis of Self-Assembled Prismatic Iron Oxide Nanoparticles by A Novel Thermal Decomposition Route. RSC Adv. 2013, 3 (1), 189–200. https://doi.org/10.1039/c2ra22004k.
(238) Shard, A. G. Detection Limits in XPS for More Than 6000 Binary Systems Using Al and Mg Kα X-Rays. Surf. Interface Anal. 2014, 46 (3), 175–185. https://doi.org/10.1002/sia.5406.
(239) Walker, J. D.; Tannenbaum, R. Characterization of the Sol-Gel Formation of Iron(III) Oxide/Hydroxide Nanonetworks from Weak Base Molecules. Chem. Mater. 2006, 18 (20), 4793–4801. https://doi.org/10.1021/cm0609101.
(240) Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257 (7), 2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051.
(241) Briggs, D.; Beamson, G. XPS Studies of the Oxygen 1s and 2s Levels in a Wide Range of Functional Polymers. Anal. Chem. 1993, 65 (11), 1517–1523. https://doi.org/10.1021/ac00059a006.
(242) López, G. P.; Castner, D. G.; Ratner, B. D. XPS O 1s Binding Energies for Polymers Containing Hydroxyl, Ether, Ketone and Ester Groups. Surf. Interface Anal. 1991, 17 (5), 267–272. https://doi.org/10.1002/sia.740170508.
(243) Oakes, J.; Child, T. F. Interactions of Cu2+ and Mn2+ with Agarose and Calcium Alginate Gels by ESR. Nat. Phys. Sci. 1973, 241, 20.
(244) Goldberg, S.; Johnston, C. T. Mechanisms of Arsenic Adsorption on Amorphous Oxides Evaluated Using Macroscopic Measurements, Vibrational Spectroscopy, and Surface Complexation Modeling. J. Colloid Interface Sci. 2001, 234 (1), 204–216. https://doi.org/10.1006/jcis.2000.7295.
(245) Hayes, K. F.; Roe, A. L.; Brown, G. E.; Hodgson, K. O.; Leckie, J. O.; Parks, G. A. In Situ X-Ray Absorption Study of Surface Complexes: Selenium Oxyanions on α-FeOOH. Science (80-. ). 1987, 238 (4828), 783–786. https://doi.org/10.1126/science.238.4828.783.
(246) McBride, M. B. Reactions Controlling Heavy Metal Solubility In Soils. In Advances in Soil Science; Stewart, B. A., Ed.; Springer-Verlag: New York, 1989; Vol. 10, pp 1–56.
(247) Manning, B. A.; Fendorf, S. E.; Goldberg, S. Surface Structures and Stability of Arsenic(III) on Goethite: Spectroscopic Evidence for Inner-Sphere Complexes. Environ. Sci. Technol. 1998, 32 (16), 2383–2388. https://doi.org/10.1021/es9802201.
(248) Guo, M.; Pitet, L. M.; Wyss, H. M.; Vos, M.; Dankers, P. Y. W.; Meijer, E. W. Tough Stimuli-Responsive Supramolecular Hydrogels with Hydrogen-Bonding Network Junctions. J. Am. Chem. Soc. 2014, 136 (19), 6969–6977. https://doi.org/10.1021/ja500205v.
(249) Atwood, J. L. Separation of Active Pharmaceutical Ingredients (APIs) from Excipients in Pharmaceutical Formulations. Cryst. Growth Des. 2015, 15 (6), 2874–2877. https://doi.org/10.1021/acs.cgd.5b00317.
(250) Atwood, J. L. Separation Method for Active Pharmaceutical Ingredients from Excipients. US Pat. Appl., 2016/0340350 A1, 2016.
(251) Hoang, T. H.; Sharma, R.; Susanto, D.; Maso, M. Di; Kwong, E. Microwave-Assisted Extraction of Active Pharmaceutical Ingredient from Solid Dosage Forms. J. Chromatogr. A 2007, 1156 (1–2), 149–153. https://doi.org/10.1016/j.chroma.2007.02.060.
(252) Hsieh, D. S.; Lindrud, M.; Lu, X.; Zordan, C.; Tang, L.; Davies, M. A Process for Active Pharmaceutical Ingredient Recovery from Tablets Using Green Engineering Technology. Org. Process Res. Dev. 2017, 21 (9), 1272–1285. https://doi.org/10.1021/acs.oprd.7b00146.
(253) e Silva, F. A.; Caban, M.; Stepnowski, P.; Coutinho, J. A. P.; Ventura, S. P. M. Recovery of Ibuprofen from Pharmaceutical Wastes Using Ionic Liquids. Green Chem. 2016, 18 (13), 3749–3757. https://doi.org/10.1039/c6gc00261g.
(254) Pratama, D. E.; Hsieh, W.-C.; Elmaamoun, A.; Lee, H. L.; Lee, T. Recovery of Active Pharmaceutical Ingredients from Unused Solid Dosage-Form Drugs. ACS Omega 2020, 5 (45), 29147–29157. https://doi.org/10.1021/acsomega.0c03878.
(255) Pratama, D. E.; Hsieh, W. C.; Lin, K. Y.; Chen, Y. Y.; Lin, C. C.; Lee, T.; Hu, Y. Unconventional Separation of Arsenic Trioxide from Unused Aqueous Chemotherapeutic Agents by Direct Evaporative Crystallization. Sep. Sci. Technol. 2020, 56 (15), 2634–2647. https://doi.org/10.1080/01496395.2020.1837876.
(256) Merck-Millipore. Acetaminophen, Aspirin and Caffeine (USP) - Excedrin Tablet Dissolution; 2019.
(257) Ibuprofen in USP 35-NF 30. In USP 35-NF 30; United States Pharmacopeial Convention, 2011; p 3470.
(258) Aulton, M. Cellulose, Powdered. In Handbook of Pharmaceutical Excipients, 5th ed.; Rowe, R. C., Sheskey, P. J., Owen, S. C., Eds.; Pharmaceutical Press: London, 2005; pp 136–138.
(259) Edge, S.; Kibbe, A.; Kussendrager, K. Lactose, Monohydrate. In Handbook of Pharmaceutical Excipients, 5th ed.; Rowe, R. C., Sheskey, P. J., Owen, S. C., Eds.; Pharmaceutical Press: London, 2005; pp 389–395.
(260) Galichet, L. Starch. In Handbook of Pharmaceutical Excipients, 5th ed.; Rowe, R. C., Sheskey, P. J., Owen, S. C., Eds.; Pharmaceutical Press: London, 2005; pp 725–730.
(261) Allen, L.; Luner, P. Magnesium Stearate. In Handbook of Pharmaceutical Excipients, 5th ed.; Rowe, R. C., Sheskey, P. J., Owen, S. C., Eds.; Pharmaceutical Press: London, 2005; pp 430–433.
(262) Harwood, R. Hydroxypropyl Cellulose. In Handbook of Pharmaceutical Excipients, 5th ed.; Rowe, R. C., Sheskey, P. J., Owen, S. C., Eds.; Pharmaceutical Press: London, 2005; pp 336–340.
(263) Kibbe, A. Ascorbic Acid. In Handbook of Pharmaceutical Excipients, 5th ed.; Rowe, R. C., Sheskey, P. J., Owen, S. C., Eds.; Pharmaceutical Press: London, 2005; pp 48–50.
(264) Guest, R. Butylated Hydroxyanisole. In Handbook of Pharmaceutical Excipients, 5th ed.; Rowe, R. C., Sheskey, P. J., Owen, S. C., Eds.; Pharmaceutical Press: London, 2005; pp 79–80.
(265) Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening. Pharm. Technol. 2006, 30 (10), 72–87.
(266) Impurities: Guideline for Residual Solvents (ICH Q3C). International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use 2016, pp 2, 5–8.
(267) United State Pharmacopoeia. Acetaminophen Interim Revision Announcement. 2014, pp 1–2.
(268) Cornelis, R.; Caruso, J.; Crews, H.; Heumann, K. Speciation of Arsenic. Handbook of Elemental Speciation, Handbook of Elemental Speciation II: Species in the Environment, Food, Medicine and Occupational Health. John Wiley & Sons: West Sussex 2005, p 72. https://doi.org/10.1002/0470856009.
(269) Geankoplis, C. J. Transport Processes and Unit Operations. Prentice-Hall: Englewood Cliffs, NJ, USA 1993, p 857.
(270) Kebede, M. L.; Bäbler, M. U.; Rozada-Sanchez, R.; Gregertsen, B.; Rasmuson, Å. C. Isolation of Pharmaceutical Intermediates through Solid Supported Evaporation. Batch Operation Mode. Ind. Eng. Chem. Res. 2012, 51 (41), 13445–13453. https://doi.org/10.1021/ie301358x.
(271) Grund, S. C.; Hanusch, K.; Wolf, H. U. Arsenic and Arsenic Compounds. In Ullmann’s Encyclopedia of Industrial Chemistry; Bellussi, G., Bohnet, M., Bus, J., Drauz, K., Greim, H., Jackel, K.-P., Karst, U., Kleemann, A., Kreysa, G., Laird, T., Meier, W., Ottow, E., Roper, M., Scholtz, J., Sundmacher, K., Ulber, R., Wietelmann, U., Eds.; Wiley: Weinheim, 2012; Vol. 4, pp 199–239. https://doi.org/10.1002/14356007.a03.
(272) United States Environmental Protection Agency. Technical Fact Sheet: Final Rule for Arsenic in Drinking Water. United States Environmental Protection Agency 2001, p 1.
指導教授 李度(Tu Lee) 審核日期 2023-1-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明