博碩士論文 107324027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.145.53.55
姓名 李寶真(Bao-Jhen Li)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 ZnO/Metal/ZnO透明導電膜光電性質最佳化及其在可撓式透明電極中的應用
(Optimization of the Optoelectronic Properties of ZnO/Metal/ZnO Transparent Conductive Films and The Application in Flexible Transparent Electrodes.)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-3-21以後開放)
摘要(中) ZnO是一種氧化物層結構,在柔性器件中取代 ITO的前景非常有潛力,因為它比
ITO更具柔韌性。為了增強結構的透明度和導電性,不同的金屬材料被夾在頂部和底部
的 ZnO層之間。使用電阻抗方法,通過確定最佳的金屬層和 ZnO層厚度以實現最大透
明度。發現 Ag、 Au和 Cu是表現最好的材料,它們的體積導電率超過其他材料,使它
們成為增強器件光電特性的 絕佳候選材料 。
為了研究電氣特性,使用了掺雜高價數金屬或使用高導電
Ag等方法。還探討了層
間結構對薄膜整體光電和柔韌性能的影響,其中 ZnO/V/ZnO多層結構主要關注電性,
例如電阻率、載流子濃度和遷移率。在 300℃的退火 後 ZnO/V/ZnO多層結構表現出最
低的 3.82×10-3 Ω-cm電阻率和最高的 18 cm2/V-s遷移率,這歸功於 ZnO/ZnVxOy界面處
的潛在 勢能 井。研究表明, ZnO/ZnVxOy異質結合處的潛在 勢能 井會產生 2DEG(二維電
子氣體)效應,極大地增強了遷移率。
相比之下,
ZnO/Ag/ZnO多層結構主要研究光學特性。使用電阻抗方法確定了光傳
輸的最佳結構,結果在濺射後,得到了 ZnO(45nm)/Ag(7nm)/ZnO(45nm)的膜厚,在可見
光區域的平均透射率為 93.62 %。此外,透明度還受到納米級間隙層的表面形貌、厚度、
折射率 (n)、消光係數 (k)和晶體結構的影響。綜合考慮這些因素可以解釋在納米尺度下實
際塗層情況下的高透明度成因。
摘要(英) ZnO, an oxide layer structure in OMO, has emerged as a promising candidate for replacing ITO in flexible devices due to its superior flexibility. To enhance the transparency and conductivity of the structure, various metal materials were sandwiched between the top and bottom ZnO layers. Using the admittance method, the optimal metal layer and ZnO layer thickness were determined for maximum transparency. Ag, Au, and Cu were found to be the top performers, with their bulk conductivity surpassing that of other materials, making them attractive choices for enhancing the optoelectronic properties of the device.
To investigate electrical properties, methods such as doping with high valence number metals or using highly conductive Ag were employed. The impact of the interlayer structure on the overall optoelectronic and flexibility properties of the film was also explored, with the ZnO/V/ZnO multilayer structure mainly focusing on electrical properties such as resistivity, carrier concentration, and mobility. After annealing at 300˚C, the ZnO/V/ZnO multilayer structure exhibited the lowest resistivity of 3.82×10-3 Ω-cm and the highest mobility of 18 cm2/V-s, thanks to the potential well at the ZnO/ZnVxOy interface. Studies show that the potential well at the ZnO/ZnVxOy heterojunction leads to a 2DEG (two-dimensional electron gas) effect, which greatly enhances mobility.
In contrast, the ZnO/Ag/ZnO multilayer structure mainly investigated the optical properties. The admittance method was used to determine the optimal structure for light transmission, resulting in a film thickness of ZnO (45nm)/Ag (7nm)/ZnO (45nm) with an average transmittance of 93.62% in the visible light region after sputtering. Additionally, the transparency was affected by the surface morphology, thickness, refractive index (n), extinction coefficient (k), and crystal structure of the nanoscale interlayer. Taken together, these factors can account for the variations in transparency observed in real coating situations at the nanoscale.
關鍵字(中) ★ 三明治夾層
★ 奈撓曲
★ 光電性質
★ 導納法
★ 模擬
★ 撓曲測試
關鍵字(英) ★ ZnO/Metal/ZnO
★ Flexible
★ Optoelectronic Properties
★ admittance method
★ simulation
★ Bending test
論文目次 中文摘要 .................................................................................................................................................. i
Abstract ................................................................................................................................................... ii
誌謝 ........................................................................................................................................................ iii
Table of Contents ................................................................................................................................... iv
List of figures ......................................................................................................................................... vi
List of tables ........................................................................................................................................... ix
Chapter 1 Introduction of the theoretical background ............................................................................. 1
1.1 Properties of ZnO ................................................................................................................ 1
1.2 Applications of ZnO base structures .................................................................................. 4
1.3 Manufacture of oxide and metal layers ............................................................................. 6
1.4 Motivation ............................................................................................................................ 7
Chapter 2 Experimental procedure ........................................................................................................ 10
2.1 Experimental procedure .................................................................................................... 10
2.2 Instrumental analysis ........................................................................................................ 12
Chapter 3 Simulation of the optical properties of the ZMZ .................................................................. 17
3.1 Oxide/Metal/Oxide sandwich structure ........................................................................... 17
3.2 The Admittance Method: Simulating Light Behavior at Dielectric Interfaces ............ 18
Chapter 4. optoelectrical properties of ZnO/Ag/ZnO structure ............................................................ 28
4.1. Optical transmittance of ZnO/Ag/ZnO films .................................................................. 28
4.2. The Influence of nanoscale Ag Structure on ZnO/Ag/ZnO Transmittance ................. 35
4.3. Electrical properties of ZnO/Ag/ZnO sandwich structure ............................................ 39
4.4 Bending test of ZnO/Ag/ZnO thin film at room temperature ....................................... 45
Chapter 5. Electrical Properties and Band Structure of V/ZnO Multi-Layer Structures with ZnVxOy Ternary Layers ...................................................................................................................................... 47
5.1 Optimization of the optoelectronic properties of ZVZ ................................................... 47
5.2 Energy band diagram construction .................................................................................. 50
Chapter 6 Summary ............................................................................................................................... 55
References ............................................................................................................................................. 56
參考文獻 References
1. Kucheyev, S., et al., Mechanical deformation of single-crystal ZnO. Applied Physics Letters, 2002. 80(6): p. 956-958.
2. Kucheyev, S., et al., Nanoindentation of epitaxial GaN films. Applied Physics Letters, 2000. 77(21): p. 3373-3375.
3. Schröer, P., P. Krüger, and J. Pollmann, First-principles calculation of the electronic structure of the wurtzite semiconductors ZnO and ZnS. Physical Review B, 1993. 47(12): p. 6971.
4. Raimondi, D. and E. Kay, High resistivity transparent ZnO thin films. Journal of Vacuum Science and Technology, 1970. 7(1): p. 96-99.
5. Özgür, Ü., et al., A comprehensive review of ZnO materials and devices. Journal of applied physics, 2005. 98(4): p. 11.
6. McCluskey, M.D. and S. Jokela, Defects in zno. Journal of Applied Physics, 2009. 106(7): p. 10.
7. Van de Walle, C.G., Hydrogen as a cause of doping in zinc oxide. Physical review letters, 2000. 85(5): p. 1012.
8. Kato, H., et al., Growth and characterization of Ga-doped ZnO layers on a-plane sapphire substrates grown by molecular beam epitaxy. Journal of crystal growth, 2002. 237: p. 538-543.
9. Park, C., S. Zhang, and S.-H. Wei, Origin of p-type doping difficulty in ZnO: The impurity perspective. Physical Review B, 2002. 66(7): p. 073202.
10. Van de Walle, C.G., Defect analysis and engineering in ZnO. Physica B: Condensed Matter, 2001. 308: p. 899-903.
11. Matsubara, M., et al., Properties of threading screw dislocation core in wurtzite GaN studied by Heyd-Scuseria-Ernzerhof hybrid functional. Applied Physics Letters, 2013. 103(26): p. 262107.
12. Sahu, D. and J.-L. Huang, Characteristics of ZnO–Cu–ZnO multilayer films on copper layer properties. Applied Surface Science, 2006. 253(2): p. 827-832.
13. Sahu, D. and J.-L. Huang, Dependence of film thickness on the electrical and optical properties of ZnO–Cu–ZnO multilayers. Applied Surface Science, 2006. 253(2): p. 915-918.
14. Sahu, D.R., S.-Y. Lin, and J.-L. Huang, Improved properties of Al-doped ZnO film by electron beam evaporation technique. Microelectronics Journal, 2007. 38(2): p. 245-250.
15. Sahu, D.R. and J.-L. Huang, The properties of ZnO/Cu/ZnO multilayer films before and after annealing in the different atmosphere. Thin Solid Films, 2007. 516(2-4): p. 208-211.
57
16. Sahu, D. and J. Huang, Microelectron. J. 2007.
17. Sivaramakrishnan, K., et al., The role of copper in ZnO/Cu/ZnO thin films for flexible electronics. Journal of Applied Physics, 2009. 106(6): p. 063510.
18. Tsukazaki, A., et al., Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature materials, 2005. 4(1): p. 42-46.
19. Song, K., et al., Fully flexible solution‐deposited ZnO thin‐film transistors. Advanced materials, 2010. 22(38): p. 4308-4312.
20. Ju, S., et al., Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nature nanotechnology, 2007. 2(6): p. 378-384.
21. Zhang, Y.-H., et al., Review of flexible and transparent thin-film transistors based on zinc oxide and related materials. Chinese Physics B, 2017. 26(4): p. 047307.
22. Guillen, C. and J. Herrero, TCO/metal/TCO structures for energy and flexible electronics. Thin Solid Films, 2011. 520(1): p. 1-17.
23. Kumar, M.H., et al., Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chemical Communications, 2013. 49(94): p. 11089-11091.
24. Fu, Y., et al., Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Advanced materials, 2012. 24(42): p. 5713-5718.
25. Lee, S.P., et al., Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring. NPJ digital medicine, 2018. 1(1): p. 2.
26. Liang, X., et al., High performance all-solid-state flexible supercapacitor for wearable storage device application. Chemical Engineering Journal, 2018. 345: p. 186-195.
27. Xie, T., et al., Graphene-based supercapacitors as flexible wearable sensor for monitoring pulse-beat. Ceramics International, 2019. 45(2): p. 2516-2520.
28. Wang, D., et al., Chemical formation of soft metal electrodes for flexible and wearable electronics. Chemical Society Reviews, 2018. 47(12): p. 4611-4641.
29. Kim, C.S., et al., Self-powered wearable electrocardiography using a wearable thermoelectric power generator. ACS Energy Letters, 2018. 3(3): p. 501-507.
30. Zhao, G., et al., Bendable solar cells from stable, flexible, and transparent conducting electrodes fabricated using a nitrogen‐doped ultrathin copper film. Advanced Functional Materials, 2016. 26(23): p. 4180-4191.
31. Jeong, C.K., et al., Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy & Environmental Science, 2014. 7(12): p. 4035-4043.
32. Alzoubi, K., et al., Bending fatigue study of sputtered ITO on flexible substrate. Journal of Display Technology, 2011. 7(11): p. 593-600.
33. Cairns, D.R., et al., Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Applied Physics Letters, 2000. 76(11): p. 1425-1427.
34. Han, Z., et al., Breast cancer multi-classification from histopathological images with
58
structured deep learning model. Scientific reports, 2017. 7(1): p. 4172.
35. Bagal, A., et al., Multifunctional nano-accordion structures for stretchable transparent conductors. Materials Horizons, 2015. 2(5): p. 486-494.
36. Lee, B.R., et al., Highly flexible and transparent memristive devices using cross-stacked oxide/metal/oxide electrode layers. ACS applied materials & interfaces, 2019. 11(5): p. 5215-5222.
37. Miccoli, I., et al., The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems. Journal of Physics: Condensed Matter, 2015. 27(22): p. 223201.
38. Carcia, P., R. McLean, and M. Reilly, High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition. Applied physics letters, 2006. 88(12): p. 123509.
39. Djurišić, A., A.M.C. Ng, and X. Chen, ZnO nanostructures for optoelectronics: Material properties and device applications. Progress in quantum electronics, 2010. 34(4): p. 191-259.
40. Prakash, G.V., et al., Fabrication and optoelectronic characterisation of ZnO photonic structures. Materials Letters, 2008. 62(8-9): p. 1183-1186.
41. Tsakonas, C., et al., Low temperature sputter-deposited ZnO films with enhanced Hall mobility using excimer laser post-processing. Journal of Physics D: Applied Physics, 2017. 50(48): p. 485306.
42. Bass, M., Handbook of Optics: Volume V–Atmospheric Optics, Modulators, Fiber Optics, X-Ray and Neutron Optics. 2010: McGraw-Hill Education.
43. Wu, Y., et al., Intrinsic optical properties and enhanced plasmonic response of epitaxial silver. Advanced Materials, 2014. 26(35): p. 6106-6110.
44. Philipp, H., Silicon dioxide (SiO2)(glass), in Handbook of optical constants of solids. 1997, Elsevier. p. 749-763.
45. McPeak, K.M., et al., Plasmonic films can easily be better: rules and recipes. ACS photonics, 2015. 2(3): p. 326-333.
46. Werner, W.S., K. Glantschnig, and C. Ambrosch-Draxl, Optical constants and inelastic electron-scattering data for 17 elemental metals. Journal of Physical and Chemical Reference Data, 2009. 38(4): p. 1013-1092.
47. Palm, K.J., et al., Dynamic optical properties of metal hydrides. Acs Photonics, 2018. 5(11): p. 4677-4686.
48. Johnson, P. and R. Christy, Optical constants of transition metals: Ti, v, cr, mn, fe, co, ni, and pd. Physical review B, 1974. 9(12): p. 5056.
49. Weaver, J., D.W. Lynch, and C. Olson, Optical properties of niobium from 0.1 to 36.4 eV. Physical Review B, 1973. 7(10): p. 4311.
50. Ma, X., et al., Electronic and optical properties of strained noble metals: Implications
59
for applications based on LSPR. Nano Energy, 2018. 53: p. 932-939.
51. Wu, K., C.-C. Lee, and T.-L. Ni, Advanced broadband monitoring for thin film deposition through equivalent optical admittance loci observation. Optics Express, 2012. 20(4): p. 3883-3889.
52. Chen, W.-H., et al., Conductive and transparent properties of ZnO/Cu/ZnO sandwich structure. Journal of electronic materials, 2021. 50: p. 779-785.
53. Sahu, D. and J.-L. Huang, High quality transparent conductive ZnO/Ag/ZnO multilayer films deposited at room temperature. Thin solid films, 2006. 515(3): p. 876-879.
54. Hwang, L.-T. and I. Turlik, A review of the skin effect as applied to thin film interconnections. IEEE transactions on components, hybrids, and manufacturing technology, 1992. 15(1): p. 43-55.
55. Neugebauer, C. and M. Webb, Electrical conduction mechanism in ultrathin, evaporated metal films. Journal of Applied Physics, 1962. 33(1): p. 74-82.
56. Steane, A., Quantum computing. Reports on Progress in Physics, 1998. 61(2): p. 117.
57. Simmons, J.G., Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. Journal of applied physics, 1963. 34(6): p. 1793-1803.
58. Li, B., et al., High-mobility ZnVxOy/ZnO conduction path in ZnO/V/ZnO multilayer structure. Journal of Applied Physics, 2021. 130(7): p. 075302.
59. Bhorde, A., et al., (400)-Oriented indium tin oxide thin films with high mobility and figure of merit prepared by radio frequency magnetron sputtering. Thin Solid Films, 2020. 704: p. 137972.
60. MP, N.D.H.Y.I., Ip K. Pearton SJ Chisholm MF Steiner T. Mater. Today, 2004. 7: p. 34-40.
61. Leenheer, A.J., et al., General mobility and carrier concentration relationship in transparent amorphous indium zinc oxide films. Physical Review B, 2008. 77(11): p. 115215.
62. Bhosle, V. and A. Tiwari, Narayan 2006 Appl. Phys. Lett. 88: p. 032106.
63. Steinhauser, J., et al., Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films. Applied Physics Letters, 2007. 90(14): p. 142107.
64. Hung-Chun Lai, H., et al., Dopant-induced bandgap shift in Al-doped ZnO thin films prepared by spray pyrolysis. Journal of Applied Physics, 2012. 112(8): p. 083708.
65. Banerjee, P., et al., Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films. Journal of Applied Physics, 2010. 108(4): p. 043504.
66. Bikowski, A., T. Welzel, and K. Ellmer, The impact of negative oxygen ion bombardment on electronic and structural properties of magnetron sputtered ZnO: Al
60
films. Applied Physics Letters, 2013. 102(24): p. 242106.
67. Kim, D., I. Yun, and H. Kim, Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells. Current Applied Physics, 2010. 10(3): p. S459-S462.
68. Liu, Y., Q. Li, and H. Shao, Optical and photoluminescent properties of Al-doped zinc oxide thin films by pulsed laser deposition. Journal of Alloys and Compounds, 2009. 485(1-2): p. 529-531.
69. Silversmit, G., et al., Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). Journal of Electron Spectroscopy and Related Phenomena, 2004. 135(2-3): p. 167-175.
70. Yang, X., et al., Improving the performance of PbS quantum dot solar cells by optimizing ZnO window layer. Nano-micro letters, 2017. 9: p. 1-10.
71. Pedrosa, P., et al., In situ electrical resistivity measurements of vanadium thin films performed in vacuum during different annealing cycles. Review of Scientific Instruments, 2017. 88(2): p. 025105.
72. Manno, D., et al., Structural and electrical properties of sputtered vanadium oxide thin films for applications as gas sensing material. Journal of applied physics, 1997. 81(6): p. 2709-2714.
73. Klein, A., et al., Surface potentials of magnetron sputtered transparent conducting oxides. Thin Solid Films, 2009. 518(4): p. 1197-1203.
74. Sharma, A., et al., Nanoscale heterogeniety and workfunction variations in ZnO thin films. Applied Surface Science, 2016. 363: p. 516-521.
75. Girvin, S. and R. Prange, The quantum Hall effect. 1987.
76. Nieminen, R.M., Electronic properties of two-dimensional systems. Physica Scripta, 1988. 1988(T23): p. 54.
77. Tsui, D.C., HL Stormer, and AC Gossard. Phys. Rev. Lett, 1982. 48(1559): p. 3.
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2023-3-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明