博碩士論文 109827001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.144.250.223
姓名 洪綺鴻(Hong-Qi Hong)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 建立三維列印仿生皮膚模型用於經皮藥物測試平台
(To Develop a Three-dimensional Printed Biomimetic Skin Model for the Testing Platform of Transdermal Drugs)
相關論文
★ 開發人工利基應用於常溫細胞儲存和運輸★ 利用體外循環培養系統模擬腦源性神經分泌促使 硬骨類組織成熟化
★ 開發個人化具生物活性之功能性硬骨類組織★ 開發具有骨引導性之仿生凝膠應用於固定永久性硬骨植入物
★ 開發鈉鉀離子交換系統應用於體外耳蝸前驅細胞分化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 每⼀年,動物實驗的消耗數量約為⼀億五千萬隻,在研究上的花費及動物與⼈體內
環境差異甚⾄是社會的道德標準都是⼀項需要被關注及解決的問題。近年來,由於歐盟
意識的抬頭,許多國家已經禁⽌經由動物實驗的化妝產品進⼝及設⽴相關法規,但在⽇
常使⽤的保養品或是化妝品若無經過⽪膚試驗,恐對我們⼈體造成不可預知的傷害。本
研究提出⼀個模仿⼈體⽪膚真實環境來進⾏產品的試驗,解決動物實驗相關限制的問題,
並且解決動物與⼈體環境差異問題,模仿⼈體真實⽪膚的部分利⽤來源為動物 I 型去端
肽的膠原蛋⽩⽣物墨⽔(Collgel®)作為細胞⽀架並加⼊⼈類成纖維母細胞(Fibroblast,
HDF )並使⽤⽣物型 3D 列印機進⾏列印建⽴真⽪層(Dermis)的架構,並於膠原蛋⽩⽣
物墨⽔上⽅加⼊⼈類⾓質形成細胞(Keratinocyte, HaCaT)作為表⽪層的替代,以 24 孔
盤插⼊式培養⽫(Transwell)進⾏共培養以及形成氣液介⾯,並於 28 天的培養以促使
⾓質形成細胞可以有效分化形成具疏⽔性的⾓質層以模擬真實⼈體⽪膚中的特性、⽪膚
吸收之情形,將此仿⽣⽪膚平台⽤於化妝品測試並觀察表⽪層通透與否及吸收之情形。
摘要(英) Every year, the consumption of animal experiments is about 150 million. The cost of
research, the differences in the internal environment of animals and humans, and even the moral
standards of society are issues that need to be paid attention to and solved.In recent years, due
to the rising awareness of the European Union, many countries have banned the import of
cosmetic products that have undergone animal experiments and established relevant
regulations. However, if the skin care products or cosmetics used in daily use are not tested on
the skin, they may cause unpredictable harm to our human body.This study proposes a product
test that imitates the real environment of human skin, solves the problems related to animal
experiments, and solves the problem of differences between animals and human environments.
The part that mimics the real skin of the human body uses collagen derived from pig tendon
type I atelopeptide. Protein bio-ink (Collgel®) is used as a cell scaffold and human fibroblasts
(Fibroblast, HDF ) and printed using a bio-type 3D printer to build the structure of the dermis
(Dermis), and added on top of the collagen bio-ink Human keratinocytes (Keratinocyte,
HaCaT), as a substitute for the epidermis, were co-cultured in a 24-well insert culture dish
(Transwell) and formed an air-liquid interface, and cultured for 28 days to promote the effective
differentiation of keratinocytes to form Hydrophobic stratum corneum to simulate the
characteristics of real human skin and the situation of skin absorption. Use this bionic skin
platform for cosmetic testing and observe whether the epidermis is transparent or not and the
situation of absorption
關鍵字(中) ★ ⽪膚三維培養
★ 3R 動物替代
★ 氣液介⾯
★ ⽣物 3D 列印機
關鍵字(英) ★ 3D skin culture
★ 3R animal replacement
★ Air-liquid interface
★ 3D bio-printing
論文目次 摘要 .............................................................................................................................................i
ABSTRACT ...............................................................................................................................ii
⽬錄 ...........................................................................................................................................iii
圖⽬錄 .......................................................................................................................................ix
表⽬錄 ......................................................................................................................................xii
第⼀章 研究背景暨⽂獻回顧 ........................................................................................1
1-1 ⽪膚 (Skin).............................................................................................................1
1-1-1 表⽪層...............................................................................................................2
1-1-2 真⽪層...............................................................................................................3
1-1-3 ⽪下組織...........................................................................................................4
1-2 ⼆維三維細胞培養 (2D/3D cell culture)..............................................................4
1-2-1 ⼆維細胞培養...................................................................................................5
1-2-2 三維細胞培養...................................................................................................5
1-2-3 三維⽀架...........................................................................................................6
1-2-4 ⼆維三維細胞培養優缺點...............................................................................7
1-3 ⽣物墨⽔ (Bioink).................................................................................................7
1-3-1 膠原蛋⽩⽣物墨⽔...........................................................................................9
1-3-2 明膠⽣物墨⽔...................................................................................................9
1-3-3 海藻酸鹽...........................................................................................................9
1-4 3D ⽣物列印 (3D Bioprinting)............................................................................10
1-4-1 噴墨式⽣物列印.............................................................................................10
1-4-2 擠壓式⽣物列印.............................................................................................11
1-4-3 雷射輔助⽣物列印........................................................................................11
1-5 細胞培養 (Cell Culture) ......................................................................................13
1-5-1 ⼈類真⽪成纖維母細胞 (Fibroblast, HDF) ............................................13
1-5-2 ⼈類表⽪⾓質形成細胞 (Keratinocyte, HaCaT) ....................................13
1-6-1 擠壓型⽣物 3D 列印機原理..........................................................................15
1-6-2 空氣⼒泵幫浦.................................................................................................15
1-6-3 ⽣物 3D 列印機操作平台..............................................................................16
1-7 膠原蛋⽩⽣物墨⽔(Collgel®)..............................................................................16
1-7-1 膠原蛋⽩ RGD 序列.....................................................................................17
1-8 體外⽪膚模型的建⽴(Establishment of in vitro skin model)..............................18
1-8-1 插⼊式細胞培養⽫.........................................................................................18
1-9 ⼈類真⽪成纖維母細胞與⼈類表⽪⾓質形成細胞共培養系統(Co-Culture
System).............................................................................................................................19
1-10 氣液介⾯培養系統(Air-Liquid Cell Culture System, ALI)..............................19
第⼆章 研究動機與實驗⽬的 ................................................................................................21
2-1 研究動機....................................................................................................................21
2-2 研究⽬的....................................................................................................................22
第三章 材料與⽅法 ................................................................................................................24
3-1 膠原蛋⽩⽣物墨⽔(Collgel®).............................................................................24
3-1-1 膠原蛋⽩⽣物墨⽔製備(Collgel® preparation) .......................................24
3-1-2 纖維母細胞之膠原蛋⽩⽣物墨⽔製備(Preparation of collagen bioink
from fibroblasts).....................................................................................................24
3-2 氣液介⾯培養系統(Air-Liquid Cell Culture System, ALI).................................25
3-2-1 纖維母細胞之膠原蛋⽩⽣物墨⽔與⾓質形成細胞(Collgel® of
Fibroblasts and Keratinocytes) ..............................................................................25
3-2-3 插⼊式細胞培養⽫中氣液介⾯培養(Air-liquid Interface Culture in
Inserted Cell Culture )...........................................................................................25
3-3 膠體內細胞分析(In vivo cell analysis) ...............................................................26
3-3-細胞固定(Cell Fixation)...............................................................................26
3-3-2 膠體內纖維母細胞死活染⾊分析(Analysis of live and dead staining of
fibroblasts in collgel®) ...........................................................................................27
3-3-3 膠體內纖維母細胞與⾓質形成細胞⾻架染⾊分析(Staining Analysis of
Fibroblast and Keratinocyte Skeleton in Collgel®)................................................27
3-3-4 膠體上⽅⾓質形成細胞分化染⾊分析(Staining analysis of keratinocyte
differentiation above the Collgel®)........................................................................27
3-4 細胞培養(Cell Culture) .......................................................................................28
3-4-1 ⼈類成纖維母細胞(Fibroblast,HDF) .......................................................28
3-4-2 ⼈類⾓質形成細胞(Keratinocyte, HaCaT) ..............................................29
3-5 ⼈類⾓質形成細胞分化培養基測試(Human Keratinocyte Differentiation
Medium Test).................................................................................................................30
3-5-1 ⼈類⾓質形成細胞培養基(Human Keratinocyte Medium).....................30
3-5-2 ⼈類⾓質形成細胞分化培養基(Human Keratinocyte Differentiated
Medium).................................................................................................................31
3-5-3 分化培養基與未分化培養基⽐較測試(Differentiation Medium vs.
Common Medium Comparison Test).....................................................................32
3-6 膠原蛋⽩⽣物墨⽔結構與細胞存活率測試(Collgel® structure and cell viability
test).................................................................................................................................33
3-6-1 膠原蛋⽩⽣物墨⽔濃度選取(Collgel® Concentration Selection)............33
3-6-2 膠原蛋⽩⽣物墨⽔細胞數量選取(Collgel® Cell Count Selection) ........33
3-6-3 不同程度滅菌之膠原蛋⽩⽣物墨⽔結構測試(Structural testing of
collgel® sterilized to different degrees)..................................................................33
3-6-4 特殊滅菌之膠原蛋⽩⽣物墨⽔之細胞存活率(Cell viability of collgel®
sterilized to different degrees) ...............................................................................34
3-7 ⾓質形成細胞分化之疏⽔性測試(Hydrophobicity test for keratinocyte
differentiation) ...............................................................................................................34
第四章 結果與討論 ................................................................................................................35
4-1 膠原蛋⽩⽣物墨⽔列印(Collgel® Printing).......................................................35
4-1-1 ⽣物 3D 列印機設定之參數與操作(Parameters and operation of
biological 3D printer settings) ...............................................................................35
4-1-2 ⽣物 3D 列印檔案之膠體設計(Colloid Design for Bio-3D Printing
Files) ......................................................................................................................35
4-1-3 ⽣物 3D 列印之 STL 檔案與 Ultimaker Cura 參數設定(STL file for
biological 3D printing and Ultimaker Cura parameter setting) .............................36
4-1-4 ⽣物 3D 列印機列印纖維母細胞之膠原蛋⽩⽣物墨⽔(Collgel® for
printing fibroblasts with 3D bio-printing)..............................................................38
4-1-5 膠原蛋⽩⽣物墨⽔ 3D 列印成果(Collgel® 3D printing results).............38
4-1-6 膠原蛋⽩⽣物墨⽔放⼊插⼊式培養⽫中(Collgel® in Transwell)..........39
4-2 膠原蛋⽩⽣物墨⽔結構與細胞存活率測試(Collgel® structure and cell viability
test).................................................................................................................................40
4-2-1 膠原蛋⽩⽣物墨⽔濃度選取(Collgel® Concentration Selection) ...........40
4-2-2 膠原蛋⽩⽣物墨⽔細胞數量選取(Collgel® Cell Count Selection) ........42
4-2-3 不同程度滅菌之膠原蛋⽩⽣物墨⽔結構測試(Structural testing ofcollgel® sterilized to different degrees)..................................................................43
4-2-4 特殊滅菌之膠原蛋⽩⽣物墨⽔之細胞存活率(Live and Dead of collgel®
sterilized to different degrees) ...............................................................................49
4-3 ⼈類⾓質形成細胞分化培養基測試(Human Keratinocyte Differentiation Medium
Test)................................................................................................................................50
4-3-1 ⼈類⾓質形成細胞培養基(Human Keratinocyte Medium).....................50
4-3-2 ⼈類⾓質形成細胞分化培養基(Human Keratinocyte Differentiated
Medium).................................................................................................................52
4-3-3 分化培養基與未分化培養基⽐較測試(Differentiation Medium vs.
Common Medium Comparison Test).....................................................................53
4-4 ⾓質形成細胞分化之疏⽔性測試(Hydrophobicity test for keratinocyte
differentiation) ...............................................................................................................55
4-5 膠體內細胞分析(In vivo Collgel® analysis)........................................................57
4-5-1 膠體上⽅⾓質形成細胞分化染⾊分析(Staining analysis of Keratinocyte
Differentiation above the colloid)………………………………………………………….57
第五章 結論 ............................................................................................................................60
第六章 參考⽂獻 ....................................................................................................................61

參考文獻 [1] W. Montagna, The structure and function of skin, Elsevier2012.
[2] I. Ļihačova, EVALUATION OF SKIN ONCOLOGIC PATHOLOGIES BY
MULTISPECTRAL IMAGING METHODS, (2015).
[3] ⽪膚基本構造:https://icharming01.pixnet.net/blog/post/35224140-
%E5%9F%BA%E7%A4%8E%E7%AF%87---
%E7%9A%AE%E8%86%9A%E7%B5%90%E6%A7%8B%E3%80%81%E7%94%9F%E
7%90%86%E8%88%87%E8%86%9A%E8%B3%AA
[4] E. McLafferty, C. Hendry, A. Farley, The integumentary system: anatomy, physiology and
function of skin, Nursing Standard (through 2013) 27(3) (2012) 35.
[5] M. Whitear, The skin of fishes including cyclostomes. In “Biology of the integument. Vol.
2 Vertebrates”(J. Bereiter-Hahn, AG Matoltsy and KS Richards, eds), Springer-Verlag,
Berlin, 1986.
[6] H. Yousef, M. Alhajj, S. Sharma, Anatomy, skin (integument), epidermis, (2017).
[7] 表⽪層構造:https://www.semanticscholar.org/paper/Assessment%2C-prevention-andmanagement-of-skin-Benbow/2cc8cd4ceefca8e6fd1cc74411e7f3214fcf97ea
[8] M. Whitear, Dermis, Biology of the Integument, Springer1986, pp. 39-64.
[9] H.K. Graham, A. Eckersley, M. Ozols, K.T. Mellody, M.J. Sherratt, Human skin:
composition, structure and visualisation methods, Skin Biophysics, Springer2019, pp. 1-18.
[10] J.C. Dick, Observations on the elastic tissue of the skin with a note on the reticular layer.
at the junction of the dermis and epidermis, Journal of anatomy 81(Pt 3) (1947) 201.
[11] 真⽪層構造:https://ar.javamem.com/pictures/human-skin-structure
[12] R.E. Raskin, Skin and subcutaneous tissue, Canine and feline cytology: a color atlas and.
interpretation guide (2015) 34-90.
[13] C. Jensen, Y. Teng, Is it time to start transitioning from 2D to 3D cell culture?, Frontiers.
in molecular biosciences 7 (2020) 33.
[14] K. Duval, H. Grover, L.-H. Han, Y. Mou, A.F. Pegoraro, J. Fredberg, Z. Chen, Modeling.
physiological events in 2D vs. 3D cell culture, Physiology 32(4) (2017) 266-277.
[15] Y.M. Salinas-Vera, J. Valdés, Y. Pérez-Navarro, G. Mandujano-Lazaro, L.A. Marchat, R.
Ramos-Payán, S.I. Nuñez-Olvera, C. Pérez-Plascencia, C. López-Camarillo, ThreeDimensional 3D Culture Models in Gynecological and Breast Cancer Research, Frontiers
in Oncology (2022) 2198.
[16] K. Juarez-Moreno, D. Chávez-García, G. Hirata, R. Vazquez-Duhalt, Monolayer (2D) or. spheroids (3D) cell cultures for nanotoxicological studies? Comparison of cytotoxicity and
cell internalization of nanoparticles, Toxicology in Vitro 85 (2022) 105461.
[17] S.A. Bencherif, A. Srinivasan, J.A. Sheehan, L.M. Walker, C. Gayathri, R. Gil, J.O.
Hollinger, K. Matyjaszewski, N.R. Washburn, End-group effects on the properties of PEGco-PGA hydrogels, Acta biomaterialia 5(6) (2009) 1872-1883.
[18] B. Chevallay, D. Herbage, Collagen-based biomaterials as 3D scaffold for cell cultures:
applications for tissue engineering and gene therapy, Medical and Biological Engineering
and Computing 38(2) (2000) 211-218.
[19] Y. Haraguchi, T. Shimizu, T. Sasagawa, H. Sekine, K. Sakaguchi, T. Kikuchi, W. Sekine,
S. Sekiya, M. Yamato, M. Umezu, Fabrication of functional three-dimensional tissues by
stacking cell sheets in vitro, Nature protocols 7(5) (2012) 850-858.
[20] S. Ballav, A.J. Deshmukh, S. Siddiqui, J. Aich, S. Basu, Two-Dimensional and ThreeDimensional Cell Culture and Their Applications, (2021).
[21] E. Knight, S. Przyborski, Advances in 3D cell culture technologies enabling tissue‐like.
structures to be created in vitro, Journal of anatomy 227(6) (2015) 746-756.
[22] C.J. Ferris, K.J. Gilmore, S. Beirne, D. McCallum, G.G. Wallace, Bio-ink for ondemand. printing of living cells, Biomaterials Science 1(2) (2013) 224-230.
[23] J. Groll, J.A. Burdick, D.-W. Cho, B. Derby, M. Gelinsky, S.C. Heilshorn, T. Juengst, J.
Malda, V.A. Mironov, K. Nakayama, A definition of bioinks and their distinction from
biomaterial inks, Biofabrication 11(1) (2018) 013001.
[24] P. Erkoc, I. Uvak, M.A. Nazeer, S.R. Batool, Y.N. Odeh, O. Akdogan, S. Kizilel, 3D.
Printing of Cytocompatible Gelatin‐Cellulose‐Alginate Blend Hydrogels, Macromolecular
Bioscience 20(10) (2020) 2000106.
[25] M. Hospodiuk, M. Dey, D. Sosnoski, I.T. Ozbolat, The bioink: A comprehensive review.
on bioprintable materials, Biotechnology advances 35(2) (2017) 217-239.
[26] 3D 列印應⽤:https://investigator.tw/10881/3d-
%E7%94%9F%E7%89%A9%E5%88%97%E5%8D%B0%E5%9C%A8%E5%A4%AA%
E7%A9%BA%E9%86%AB%E7%99%82%E4%B8%AD%E7%9A%84%E6%BD%9B%
E5%8A%9B%E5%8F%8A%E6%87%89%E7%94%A8/
[27] K. Henriksen, M. Karsdal, Type I collagen, Biochemistry of collagens, laminins and.
elastin, Elsevier2016, pp. 1-11.
[28] E.O. Osidak, V.I. Kozhukhov, M.S. Osidak, S.P. Domogatsky, Collagen as bioink for.
bioprinting: A comprehensive review, International Journal of Bioprinting 6(3) (2020).
[29] R. Schwartz, M. Malpica, G.L. Thompson, A.K. Miri, Cell encapsulation in gelatin
bioink impairs 3D bioprinting resolution, Journal of the mechanical behavior of biomedical
materials 103 (2020) 103524.
[30] F.E. Montero, R.A. Rezende, J.V. Da Silva, M.A. Sabino, Development of a smart bioink
for bioprinting applications, Frontiers in Mechanical Engineering 5 (2019) 56.
spheroids (3D) cell cultures for nanotoxicological studies? Comparison of cytotoxicity and
cell internalization of nanoparticles, Toxicology in Vitro 85 (2022) 105461.
[17] S.A. Bencherif, A. Srinivasan, J.A. Sheehan, L.M. Walker, C. Gayathri, R. Gil, J.O.
Hollinger, K. Matyjaszewski, N.R. Washburn, End-group effects on the properties of PEGco-PGA hydrogels, Acta biomaterialia 5(6) (2009) 1872-1883.
[18] B. Chevallay, D. Herbage, Collagen-based biomaterials as 3D scaffold for cell cultures:
applications for tissue engineering and gene therapy, Medical and Biological Engineering
and Computing 38(2) (2000) 211-218.
[19] Y. Haraguchi, T. Shimizu, T. Sasagawa, H. Sekine, K. Sakaguchi, T. Kikuchi, W. Sekine,
S. Sekiya, M. Yamato, M. Umezu, Fabrication of functional three-dimensional tissues by
stacking cell sheets in vitro, Nature protocols 7(5) (2012) 850-858.
[20] S. Ballav, A.J. Deshmukh, S. Siddiqui, J. Aich, S. Basu, Two-Dimensional and ThreeDimensional Cell Culture and Their Applications, (2021).
[21] E. Knight, S. Przyborski, Advances in 3D cell culture technologies enabling tissue‐like.
structures to be created in vitro, Journal of anatomy 227(6) (2015) 746-756.
[22] C.J. Ferris, K.J. Gilmore, S. Beirne, D. McCallum, G.G. Wallace, Bio-ink for ondemand. printing of living cells, Biomaterials Science 1(2) (2013) 224-230.
[23] J. Groll, J.A. Burdick, D.-W. Cho, B. Derby, M. Gelinsky, S.C. Heilshorn, T. Juengst, J.
Malda, V.A. Mironov, K. Nakayama, A definition of bioinks and their distinction from
biomaterial inks, Biofabrication 11(1) (2018) 013001.
[24] P. Erkoc, I. Uvak, M.A. Nazeer, S.R. Batool, Y.N. Odeh, O. Akdogan, S. Kizilel, 3D.
Printing of Cytocompatible Gelatin‐Cellulose‐Alginate Blend Hydrogels, Macromolecular
Bioscience 20(10) (2020) 2000106.
[25] M. Hospodiuk, M. Dey, D. Sosnoski, I.T. Ozbolat, The bioink: A comprehensive review.
on bioprintable materials, Biotechnology advances 35(2) (2017) 217-239.
[26] 3D 列印應⽤:https://investigator.tw/10881/3d-
%E7%94%9F%E7%89%A9%E5%88%97%E5%8D%B0%E5%9C%A8%E5%A4%AA%
E7%A9%BA%E9%86%AB%E7%99%82%E4%B8%AD%E7%9A%84%E6%BD%9B%
E5%8A%9B%E5%8F%8A%E6%87%89%E7%94%A8/
[27] K. Henriksen, M. Karsdal, Type I collagen, Biochemistry of collagens, laminins and.
elastin, Elsevier2016, pp. 1-11.
[28] E.O. Osidak, V.I. Kozhukhov, M.S. Osidak, S.P. Domogatsky, Collagen as bioink for.
bioprinting: A comprehensive review, International Journal of Bioprinting 6(3) (2020).
[29] R. Schwartz, M. Malpica, G.L. Thompson, A.K. Miri, Cell encapsulation in gelatin
bioink impairs 3D bioprinting resolution, Journal of the mechanical behavior of biomedical
materials 103 (2020) 103524.
[30] F.E. Montero, R.A. Rezende, J.V. Da Silva, M.A. Sabino, Development of a smart bioink
for bioprinting applications, Frontiers in Mechanical Engineering 5 (2019) 56.
spheroids (3D) cell cultures for nanotoxicological studies? Comparison of cytotoxicity and
cell internalization of nanoparticles, Toxicology in Vitro 85 (2022) 105461.
[31] K. Markstedt, A. Mantas, I. Tournier, H. Martínez Ávila, D. Hagg, P. Gatenholm, 3D.
bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue
engineering applications, Biomacromolecules 16(5) (2015) 1489-1496.
[32] H.M. Nathan, S.L. Conrad, P.J. Held, K.P. McCullough, R.E. Pietroski, L.A. Siminoff,
A.O. Ojo, Organ donation in the United States, American Journal of Transplantation 3
(2003) 29-40.
[33] D. Singh, D. Singh, S.S. Han, 3D printing of scaffold for cells delivery: Advances in skin
tissue engineering, Polymers 8(1) (2016) 19.
[34] N.A. Sears, D.R. Seshadri, P.S. Dhavalikar, E. Cosgriff-Hernandez, A review of threedimensional printing in tissue engineering, Tissue Engineering Part B: Reviews 22(4)
(2016) 298-310.
[35] P.S. Gungor-Ozkerim, I. Inci, Y.S. Zhang, A. Khademhosseini, M.R. Dokmeci, Bioinks
for 3D bioprinting: an overview, Biomaterials science 6(5) (2018) 915-946.
[36] I.T. Ozbolat, M. Hospodiuk, Current advances and future perspectives in extrusion-based
bioprinting, Biomaterials 76 (2016) 321-343.
[37] C. Dou, V. Perez, J. Qu, A. Tsin, B. Xu, J. Li, A state‐of‐the‐art review of laser‐assisted
bioprinting and its future research trends, ChemBioEng Reviews 8(5) (2021) 517-534.
[38] K. Shinkar, K. Rhode, Could 3D extrusion bioprinting serve to be a real alternative to
organ transplantation in the future?, Annals of 3D Printed Medicine (2022) 100066.
[39] H. Jian, M. Wang, S. Wang, A. Wang, S. Bai, 3D bioprinting for cell culture and tissue
fabrication, Bio-Design and Manufacturing 1 (2018) 45-61.
[40] L.E. Tracy, R.A. Minasian, E. Caterson, Extracellular matrix and dermal fibroblast
function in the healing wound, Advances in wound care 5(3) (2016) 119-136.
[41] T. Schreier, E. Degen, W. Baschong, Fibroblast migration and proliferation during in
vitro wound healing, Research in experimental medicine 193(1) (1993) 195-205.
[42] E. Fuchs, C. Byrne, The epidermis: rising to the surface, Current opinion in genetics &
development 4(5) (1994) 725-736.
[43] Allevi 1 :https://www.allevi3d.com/allevi-1/
[44] Allevi 1 :https://www.allevi3d.com/allevi-1/
[45] 空氣壓縮機:https://www.amazon.com/California-Air-Tools-2010A-2-0-
Gallon/dp/B00TDNKBMC?th=1
[46] Cura 官網:https://ultimaker.com/software/ultimaker-cura
[47] 膠原蛋⽩⽣物墨⽔:https://www.collgel.com/
[48] K. Pawelec, S. Best, R. Cameron, Collagen: a network for regenerative medicine, Journal
of Materials Chemistry B 4(40) (2016) 6484-6496.
[49] https://www.researchgate.net/figure/RGD-integrin-interaction-a-Crystal-structure-of-the-RGD-sequence-from-fibronectin-bound_fig4_331406263
[50] L. Bernstam, F. Vaughan, I. Bernstein, Keratinocytes grown at the air-liquid interface, In
vitro cellular & developmental biology 22(12) (1986) 695-705.
[51] M.H. Jung, S.-M. Jung, H.S. Shin, Co-stimulation of HaCaT keratinization with
mechanical stress and air-exposure using a novel 3D culture device, Scientific reports 6(1)
(2016) 1-7.
[52] M. Pruniéras, M. Régnier, D. Woodley, Methods for cultivation of keratinocytes with an
air-liquid interface, Journal of investigative dermatology 81(1) (1983) S28-S33.
[53] https://www.sigmaaldrich.com/TW/en/technical-documents/protocol/cell-culture-andcell-culture-analysis/3d-cell-culture/epidermal-skin-culture
[54] H. Tüfek, Ö. Özkan, 4R rule in laboratory animal science, Commagene J Biol 21(1)
(2018) 55-60.
[55] 3R 原則:https://www.tierversuche-verstehen.de/das3rprinzip/
[56] ⼈⼯⽪膚造福燒傷患者:https://www.gvm.com.tw/article/6425
[57] S. Adler, D. Basketter, S. Creton, O. Pelkonen, J. Van Benthem, V. Zuang, K.E.
Andersen, A. Angers-Loustau, A. Aptula, A. Bal-Price, Alternative (non-animal) methods
for cosmetics testing: current status and future prospects—2010, Archives of toxicology
85(5) (2011) 367-485.
[58] C. Wang, X.-d. Xie, X. Huang, Z.-h. Liang, C.-r. Zhou, A quantitative study of MC3T3-
E1 cell adhesion, morphology and biomechanics on chitosan–collagen blend films at single
cell level, Colloids and Surfaces B: Biointerfaces 132 (2015) 1-9.
[59] D. Larouche, L. Cantin-Warren, M. Desgagné, R. Guignard, I. Martel, A. Ayoub, A.
Lavoie, R. Gauvin, F.A. Auger, V.J. Moulin, Improved methods to produce tissueengineered skin substitutes suitable for the permanent closure of full-thickness skin
injuries, BioResearch open access 5(1) (2016) 320-329.
[60] H. Green, Terminal differentiation of cultured human epidermal cells, Cell 11(2) (1977)
405-416.
[61] M. Morales-Hurtado, X. Zeng, P. Gonzalez-Rodriguez, J.E. Ten Elshof, E. van der Heide,
A new water absorbable mechanical Epidermal skin equivalent: The combination of
hydrophobic PDMS and hydrophilic PVA hydrogel, Journal of the mechanical behavior of
biomedical materials 46 (2015) 305-317.
[62] L.S. Cline, 3D Printing with Autodesk 123D®, Tinkercad®, and MakerBot®, McGrawHill Education2015.
[63] S. Khabia, K. Jain, Comparison of mechanical properties of components 3D printed from
different brand ABS filament on different FDM printers, Materials Today: Proceedings 26
(2020) 2907-2914.
[64] M. Djabourov, J.-P. Lechaire, F. Gaill, Structure and rheology of gelatin and collagen gels, Biorheology 30(3-4) (1993) 191-205.

指導教授 陳靖昀(Ching-Yun Chen) 審核日期 2023-2-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明