博碩士論文 109226044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.220.11.34
姓名 林承緯(Cheng-Wei Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以電光非週期性晶疇極化反轉鈮酸鋰晶片在Nd:YLF正交偏振雷射腔內達成同時選頻、倍頻、和頻與Q-調制之研究
(Simultaneous laser line selection, wavelength conversion, and Q-switching in Nd:YLF cross-polarized, dual-wavelength laser based on electro-optic aperiodically poled lithium niobate)
相關論文
★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings★ 半導體雷射泵浦內建式Q-調制Nd:MgO:PPLN雷射之研究
★ 主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究★ 以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究
★ 非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波長濾波器及倍頻多波長濾波器★ 非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻和模態轉換器之研究
★ 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件★ 退火式質子交換波導PPLN電光調制TM模態轉輻射偏振態之研究
★ 高效率雙Nd:YVO4 雷射和頻黃光產生系統★ 以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射
★ 以單塊二維週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調制器和腔內光參量振盪器★ 綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究
★ 以單晶片串級式週期性準相位匹配波長轉換器與非週期性準相位匹配電光偏振模態轉換器達成主動式調制窄頻輸出光參量振盪器之研究★ 單片非週期性晶疇極化反轉鈮酸鋰同時作為Nd:YVO4雷射Q-調制和腔內光參量產生之研究
★ 準相位匹配二倍頻軟質子交換鎂摻雜鈮酸鋰波導研究★ 以雙體積全像布拉格光柵及二維週期性晶疇極化反轉鈮酸鋰於Nd:YVO4雷射內達成脈衝式窄頻光參量振盪器之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文結合非線性光學、積體光學與雷射物理之技術將多波長選頻、波長轉換及Q-調制功能整合入鈮酸鋰光子晶片內並置入雷射共振腔,成功實現1047nm與1053nm兩偏振正交雷射之可調式電光選頻、非相位匹配二倍頻、非相位匹配和頻以及其Q-調制之功能,其中這兩波長間距僅僅只有6nm。

  藉由鈮酸鋰晶體在施加y方向電場時可改變入射光偏振之特性,本論文使用模擬退火法(Simulated annealing, SA)設計出一款非週期性光學超晶格(Aperiodic Optical Superlattices, AOS)結構,基於此結構藉由微影製程定義圖形做晶疇極化反轉來滿足Nd:YLF雷射系統之1047nm與1053nm作為電光偏振模態旋轉器(Electro-optic polarization mode converter, EOPMC)上的動量守恆匹配條件,並藉由演算法目標函數的設計,使AOS優化出的正負晶疇組合能令雙波長在雷射系統中施加電場時的偏振旋轉程度不同,定義出晶片施加不同電場時雙波長的穿透情形,以此方式來實現Nd:YLF雷射在1047nm與1053nm的正交偏振雙波長主動式電光選頻以及主動式Q-Switching,並透過雷射在鈮酸鋰內部所產生的非相位匹配機制來達成共振腔內二倍頻與和頻產生,實現一款以單晶片主動式電光調制方式來完成1047nm(e-wave)、1053nm(o-wave)、523.5nm(e-wave)、526.5nm(e-wave)以及525nm(e-wave)的多波長正交偏振雷射系統,並且此系統可工作於連續波(Continuous Wave, CW)模式或脈衝(Pulse)模式。

  經由演算法之製程結構設計、實際晶片製程,包含黃光微影、薄膜、蝕刻、研磨、拋光、極化反轉……等等到最後量測,得出晶片在連續波(Continuous Wave, CW)表現上,工作電場0V/mm可使雙波長同時輸出,並得到和頻之525nm光譜以及兩波長個別二倍頻之光譜;當晶片在工作電場568V/mm時可單段輸出純1047nm雷射,並得到其二倍頻之523.5nm光譜;當晶片在工作電場725V/mm時可單段輸出純1053nm雷射,並可得到526.5nm之雷射光譜,最後在工作電場154V/mm時可得到雙波長nonlasing的結果,並且我們亦針對上述之結果做光功率量測以及工作電場與工作波長之電光選頻容忍範圍分析。

  在Q-調制表現上,本處脈衝重複率皆為1kHz,藉由電路訊號控制High Q與Low Q持續時間,當晶片工作電場在568V/mm與154V/mm作ns等級快速切換時,可產生1047nm以及其二倍頻523.5nm之脈衝雷射,其中1047nm量得之最小脈寬為25.7ns,其脈衝峰值功率為17393瓦,其二倍頻523.5nm之最小脈寬為24.9ns,其脈衝峰值功率為164.26瓦;當工作電場條件更改為725V/mm與154V/mm時,1053nm量得之最小脈寬為32.5ns,其脈衝峰值功率為12215.38瓦,其二倍頻526.5nm之最小脈寬為29.7ns,其脈衝峰值功率為135.91瓦;最後當晶片工作電場為0V/mm與154V/mm時,可量測其和頻525nm及兩波長之二倍頻脈衝疊合之三波長最小脈寬為45.97ns,其三波長脈衝峰值功率為40.24瓦,在基頻光之雙波長表現上則為最小脈寬57.81ns,其峰值功率為10482.62W。

  未來若能在模擬退火法上改變準相位匹配條件,使極化反轉結構滿足差頻條件,並將晶片實際製作出來,有機會在正交偏振雷射系統中產生THz光源,會是一大突破。
摘要(英) In this work, the multi-wavelength frequency selection, wavelength conversion and Q-Switching functions are integrated into the lithium niobate chip. Put the chip into the laser resonant cavity, it can successfully realize the functions of tunable electro-optical frequency selection, non-phase-matched second harmonic generation (SHG), non-phase-matched sum-frequency generation (SFG) and its Q-Switching of 1047nm and 1053nm cross-polarized lasers, in which the distance between these two wavelengths is only 6nm.

In this work, we used simulated annealing algorithm to design an Aperiodic Optical Superlattices (AOS) structure and this structure can satisfy the electro-optic polarization mode converter (EOPMC) condition of 1047nm and 1053nm. And through the design of the objective function of the algorithm, the combination of positive and negative crystal domains optimized by AOS can make the polarization rotation degree of the dual wavelengths different when the electric field is applied in the laser system, and define the transmittance situation of the dual wavelengths when the chip is applied with different electric fields. So we can use this method to realize the orthogonal polarization dual-wavelength active electro-optical frequency selection and active Q-Switching of Nd:YLF laser at 1047nm and 1053nm and through the non-phase matching mechanism generated by the laser inside the lithium niobate to achieve the double frequency and sum frequency generation in the resonant cavity.

  Through the process structure design of the algorithm, the actual chip manufacturing process to the final measurement, it is concluded that the chip is in the continuous wave (CW) performance, the working electric field of 0V/mm can output two wavelengths at the same time, and the 525nm spectrum of the sum frequency can be obtained. ; When the chip is in a working electric field of 568V/mm, it can output a pure 1047nm laser, and obtain its double frequency spectrum of 523.5nm; when the chip is in a working electric field of 725V/mm, it can output a pure 1053nm laser, and obtain its double frequency spectrum of 526.5nm, and finally the nonlasing result can be obtained when the working electric field is 154V/mm.

  In terms of Q-Switching performance, when the working electric field of the chip is rapidly switched between 568V/mm and 154V/mm at ns level, the Q factor of the resonant cavity can be quickly switched between High Q and Low Q, it can generate pulsed lasers of 1047nm and its SHG of 523.5nm. The minimum pulse width measured at 1047nm is 25.7ns, and its peak pulse power is 17393 watts. The minimum pulse width of 523.5nm is 24.9ns, and its peak pulse power is 164.26 watt. When electric field is working at 725V/mm and 154V/mm, the minimum pulse width measured at 1053nm is 32.5ns, the peak pulse power is 12215.38 watts, the minimum pulse width of the SHG 526.5nm is 29.7ns, and the peak pulse power is 135.91 watts. Finally, when the working electric field of the chip is 0V/mm and 154V/mm, the minimum pulse width of the SFG 525nm and the superposition of the SHG pulse of the two wavelengths can be measured to be 45.97ns, and the peak power of the three-wavelength pulse is 40.24W, In the dual wavelength performance of fundamental frequency light, the minimum pulse width is 57.81ns, and its peak power is 10482.62W.

  In the future, if the quasi-phase matching conditions can be changed in the simulated annealing algorithm, so that the polarization inversion structure can satisfy the difference frequency generation conditions, and the chip can be actually produced, it will be a great breakthrough to have the opportunity to generate a THz light source in an orthogonal polarization laser system.
關鍵字(中) ★ 鈮酸鋰
★ 摻釹氟化釔鋰
★ Q-調制
★ 電光選頻
★ 正交偏振雙波長雷射
★ 非週期性光學超晶格
★ 波長轉換
關鍵字(英) ★ lithium niobate
★ Nd:YLF
★ Q-Switching
★ E-O Switchable
★ cross-polarized dual-wavelength laser
★ Aperiodic Optical Superlattice
★ wavelength conversion
論文目次 中文摘要 i
Abstract iii
目錄 vii
圖目錄 ix
表目錄 xiv
第一章 緒論 1
1.1雷射與非線性光學之發展與簡史 1
1.2鈮酸鋰晶體(Lithium Niobate, LiNbO3) 3
1.3摻釹氟化釔鋰晶體Nd:YLF 6
1.4研究動機 9
1.5內容概要 10
第二章 理論分析 11
2.1相位匹配 11
2.2準相位匹配(Quasi-Phase Matching, QPM) 17
2.3電光效應(Pockels effect)[19][20] 20
2.4電光偏振模態旋轉器(Electro-optic polarization mode converter, EOPMC)[22] 25
2.5共振腔Q-調制(Q-switching) 29
2.6和頻機制(Sum Frequency Generation, SFG)[15][19] 34
2.7二倍頻機制(Second Harmonic Generation, SHG) [15][19] 37
第三章 模擬與晶片設計 39
3.1非週期光學超晶格(Aperiodic Optical Superlattices, AOS) 39
3.2模擬退火法(Simulated annealing, SA) 42
3.3非週期結構模擬設計 44
3.4電光偏振模態旋轉器模擬結果與探討 48
第四章 元件製程 52
4.1黃光微影製程 52
4.2極化反轉製程 55
4.3晶片後續加工 59
第五章 實驗量測與分析 62
5.1實驗架構 63
5.2腔外量測 68
5.3腔內連續波與電光選頻量測 72
5.4腔內Q-調制脈衝量測 81
第六章 結論與未來展望 91
6.1結論 91
6.2未來展望 93
第七章 參考文獻 94
參考文獻 [1] A. Einstein, “Zum gegenwärtigen Stande des Strahlungsproblems.” Physikalische Zeitschrift, Band 10, Seite, p.185–193, 1909.
[2] M. Planck, “On the law of distribution of energy in the normal spectrum.”, Annalen der physik 4.553, p.1, 1901.
[3] A. Einstein, “Zur quantentheorie der strahlung.”, Physikalische Zeitschrift, 18, Seite, p.121-128, 1917.
[4] T. Mairnan, "Stimulated optical radiation in ruby," Nature, vol. 4736, pp. 493-494, 1960.
[5] P. A. Franken, A. E. Hill, C. W. Peter, G. Weinreich, “Generation of Optical Harmonics.”, Physical Review Letters, Vol.7, Number 4, p.118, 1961.
[6] J. A. Giordmaine, “Mixing of light beam in crystal.”, Phys. Rev. Lett. 8, P.19, 1962.
[7] W. H. Zachariasen, "Skr. Norske Vid," Ada., Oslo, Mat. Naturv, vol. 4, 1928.
[8] A. A. Ballman, "Growth of piezoelectric and ferroelectric materials by the CzochraIski technique," Journal of the American Ceramic Society, vol. 48, no. 2, pp. 112-113, 1965.
[9] R. L. Byer, J. Young, and R. Feigelson, "Growth of high‐quality LiNbO3 crystals from the congruent melt," Journal of Applied Physics, vol. 41, no. 6, pp. 2320-2325, 1970.
[10] 呂學璁,「以非週期性晶疇極化反轉鈮酸鋰晶體作為電光波長調變光參量產生器」,國立中央大學,碩士論文,2011。
[11] 孔勇發,許京軍,張光寅,劉思敏,陸猗,「多功能光電材料 – 鈮酸鋰晶體」,科學出版社,2005。
[12] D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate.”, Optics letters, Vol.22, No.20, pp. 1553-1555, 1997.
[13] 李瑋倫,「摻釹氟化釔鋰晶體在連續波與被動式Q-調制雷射之研究」,國立交通大學,碩士論文,2011。
[14] CryLink官方網站技術參考資料, https://www.halide-crylink.com/
[15] R. W. Boyed, “Nonlinear optics. Elsevier.”, 2003.
[16] J. E. Midwinter and J. Warner, “The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization.”, British Journal of Applied Physics, Vol. 16, No. 8, 1962.
[17] M. V. Hobden and J. Warner, “The Temperature Dependence of The Refractive Indices of Pure Lithium Niobate.”, Physics Letters, 22, 1966.
[18] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric.”, Physical Review, Vol. 127, 1962.
[19] Y. C. Huang, “Principles of Nonlinear Optics Course Reader.”, Institute of Photonics Technologies / Department of Electrical Engineering, National Tsinghua University, Hsinchu, Taiwan, 2007.
[20] Y. Amnon and P. Yeh, "Optical waves in crystals: propagation and control of laser radiation," New York City, NY: Wiley, 1984.
[21] I. Šolc, "Birefringent chain filters," JOSA, vol. 55, no. 6, pp. 621-625, 1965.
[22] X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28, 2115-2117, 2003.
[23] 張煒堃,「以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射」,國立中央大學,碩士論文,2009。
[24] O. Svelto, D. C. Hanna, “Principles of lasers.”, Vol. 4. New York: Plenum press, 1998.
[25] 呂其孟,「以非週期性晶疇極化反轉鈮酸鋰達成連續式或主動式Q-調制雙波長 Nd:YVO4雷射電光選頻之研究」,國立中央大學,碩士論文,2019。
[26] Ben-Yuan Gu, Bi-Zhen Dong, Yan Zhang, and Guo-Zhen Yang,“Enhanced Harmonic Generation in Aperiodic Optical Superlattices.”, Applied Physics Letters, Vol. 75, No. 15, 1999.
[27] Lin, C. H., et al. "Electro-optic narrowband multi-wavelength filter in aperiodically poled lithium niobate." Optics express 15.15, 2007.
[28] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, "Equation of state calculations by fast computing machines," The journal of chemical physics, vol. 21, no. 6, pp. 1087-1092, 1953.
[29] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," science, vol. 220, no. 4598, pp. 671-680, 1983.
[30] M. L. Bortz, dissertation, Standford, 1994.
[31] J. Webjorn, F. Laurell, G. Arvidsson, “Blue Light Generated by Frequency Doubling of Laser Diode Light in a Lithium Niobate Channel Waveguide.”, IEEE Photonics Technology Letters, 1, 1989.
[32] Alan C. G. Nutt, Venkatraman Gopalan, and Mool C.Gupta, “Domain Inversion in Linbo3 Using Direct Electron-beamwriting.”, Applied Physics Letters, 60, 1992.
[33] A. Agronin, Y. Rosenwaks, and G. Rosenman, “Ferroelectric Domain Reversal in LiNbO3 Crystals Using High-voltage Atomic Force Microscopy”, Applied Physics Letters, 85, 2004.
[34] S. Miyazawa, “Ferroelectric domain inversion in Ti‐diffused LiNbO3 optical waveguide.”, Journal of Applied Physics, Vol.50, No.7, pp. 4599-4603, 1979.
[35] Duan Feng, Nai-Ben Ming, Jing-Fen Hong, Yong-Shun Yang, Jin-Song Zhu, Zhen Yang, and Ye-Ning Wang, “Enhancement of Second-Harmonic Generation in LiNbO3 Crystals with Periodic Laminar Ferroelectric Domains.”, Applied Physics Letters, 37, 607, 1980.
[36] G. D. Miller, “Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance.”, Diss. Stanford university, 1998.
[37] TE technology.inc官方網站技術參考資料, https://tetech.com/
[38] S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016, 2010.
[39] S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors 11(6), 6125–6130, 2011.
[40] D. G. Abdelsalam, R. Magnusson, and D. Kim, “Single-shot, dual-wavelength digital holography based on polarizing separation,” Appl. Opt. 50(19), 3360–3368, 2011.
[41] L. G. Fei and S. L. Zhang, “The discovery of nanometer fringes in laser self-mixing interference,” Opt. Commun. 273(1), 226–230, 2007.
[42] P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106, 2011.
指導教授 陳彥宏(Yen-Hung Chen) 審核日期 2022-10-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明