博碩士論文 109226019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.191.202.45
姓名 謝岳廷(Yueh-Ting Hsieh)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 用於屏下螢幕顯示的相位共軛超穎表面設計
(Phase Conjugate Metasurface for Under Display Sensing)
相關論文
★ 從「紅葉」到「黑鷹」:台灣棒球醜聞的文化再現★ 基於音頻訊號隱藏技術之聲波數位傳輸
★ 金屬鹵化鈣鈦礦塊材之光致發光及光致變色特性研究★ 奈米壓印技術製作全介電幾何相位超穎表面
★ 混合式超穎介面於感光元件之應用★ 以自製灰階曝光機製作各式微光學元件
★ 高效率低深寬比幾何相位超穎介面★ 以雙面非等向性濕蝕刻製備單晶石英深穿孔
★ 奈米壓印技術製作全介電光學繞射元件★ 全介電幾何相位超穎表面的設計、優化及簡化模型
★ 以超穎校正器提升三片式庫克鏡組光學品質之研究★ 全介電幾何相位超穎表面的 抗反射設計
★ 藉由散射強化輻射冷卻發電之研究★ 以人工智慧模型修復超穎透鏡影像品質之研究
★ 基於波導共振之手鏡超穎介面之研究★ 像素級超穎介面色彩路由器之設計與製作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-11-30以後開放)
摘要(中) 全螢幕手機將是未來手機發展的趨勢,但受限於攝影鏡頭藏於螢幕下會因螢幕結構繞射影響,無法得到高品質的影像。本論文利用FDTD模擬分析,將彩色濾波片的週期結構簡化為光柵,設計出用於修正光柵繞射的超穎矯正器,此研究結果未來將可應用於屏下顯示系統。模擬中透過旋轉奈米鰭來調製相位,設計出與光柵相位共軛的超穎矯正器,達到消除繞射的效果。研究中得到的最佳成果是於光柵後加上PB-Phase特性設計的超穎矯正器後,第零階效率由7.34% 最高提升至86 %。最後我們也分析了超穎矯正器在使用上的對位精準度,在結構未對準之情況下,偏離半個晶胞(∆_x=165 nm)就會使效率降低15%以上;超穎矯正器偏離優化間距∆_z=±300 nm時,效率能保持在80%以上,這兩種情況在目前半導體製程技術下能夠有效克服;而入射光偏移時,偏移1度就會使效率降低15%以上,因此目前可使用在望遠鏡系統中。元件在寬頻的分析中,紅光、綠光與藍光的效率分別為86%、58%與28%。
摘要(英) Full-screen mobile phones will be the trend of future, but limited by the fact that the camera lens is hidden under the screen, it will be affected by the diffraction of the screen structure, and high-quality images cannot be obtained. In this paper, the FDTD simulation analysis is used to design a metacorrector to correct the diffracted light of the grating structure. The results of this research will be applied to the off-screen display system in the future. In the simulation, the phase is modulated by rotating the nanocolumn, and the phase-conjugated metasurface is designed with the grating to achieve the effect of eliminating diffraction. The best result obtained in the research is that the zeroth-order efficiency is increased from 7.34% to 86% after adding the metacorrector designed with PB-Phase characteristics behind the grating. We further investigated the efficiency variation of misalignment between metacorrector and grating. When the misalignment is in the horizontal direction, the deviation from ∆_x=165 nm (half unit cell) reduces the efficiency by 15%. When the metacorrector is away from the optimal spacing at ∆_z=±300 nm, the efficiency remains above 80%. These two situations can be effectively overcome under the semiconductor process technology. Finally, the efficiency reduces by 15% when the incident light is offset at one degree. Therefore, it can be used in telescope systems at present. In the broadband analysis of the component, the efficiency of the red, green, and blue light is 86%, 58% and 28%, respectively.
關鍵字(中) ★ 超穎表面
★ 平下螢幕顯示
★ 相位共軛
關鍵字(英) ★ metasurface
★ phase conjucate
★ PB phase
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xii
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-3 研究動機 7
第二章 基本理論 9
2-1 前言 9
2-2 繞射計算 9
2-3-1 Fourier解析相位光柵 10
2-3-2 Fraunhofer Diffraction 分析光柵繞射圖形與效率計算 11
2-4 二維等效介質的近似 13
2-5 光波的偏振 15
2-6 幾何相位 16
2-7 時域有限差分法 19
2-7-1完美匹配層邊界(Perfect Matched Layer) 19
2-7-2週期邊界(Periodic Boundary Condition) 19
2-7-3布洛赫邊界(Bloch Boundary Condition) 20
2-8布洛赫邊界(Bloch Boundary Condition) 20
第三章 相位光柵與Metacorrecter之設計與實驗結果模擬 23
3-1 光柵疊合實驗 23
3-2 相位光柵之設計 25
3-3超穎材料之奈米鰭材料選擇與幾何參數之設計 26
3-4超穎矯正器之初步架構設計 28
3-5超穎矯正器之模擬運算與優化方法 29
3-5-1波之平整性的模擬計算 29
3-5-2奈米鰭的相位貢獻 32
3-5-2-1編號n1之奈米鰭 32
3-5-2-2編號n2之奈米鰭 34
3-5-2-3編號n3之奈米鰭 35
3-5-2-4編號n4之奈米鰭 37
3-5-2-5編號n5之奈米鰭 38
3-5-2-6編號n6之奈米鰭 40
3-5-3奈米鰭旋轉角的優化 42
3-6 入射光經光柵後的能流模擬與分析 46
3-7 超穎矯正器於不同位置上之優化結果與分析 48
3-7-1位於z = -7μm的超穎矯正器之設計結果 49
3-7-2位於z = -8μm的超穎矯正器之設計結果 49
3-8 各個優化結果之差異比較與原因探討 51
3-9 超穎矯正器設計位置之再優化 58
3-10 模擬實際使用上會影響結果的各種情況之分析 60
3-10-1入射光並非垂直入射 60
3-10-2元件設計位置並非位於正確位置 61
3-10-3奈米鰭結構與對應的光柵結構並非完全對齊 62
3-11 可見光波段之元件效率分析 63
第四章 結論 65
參考文獻 67
參考文獻 [1] Takehito Suzuki and Satoshi Kondoh, “Negative refractive index metasurface in the 2.0-THz band,” Opt. Mater. Express, Vol.8, No.7, pp. 1916-1925, (2018)
[2] Dandan Wen, Fuyong Yue, Santosh Kumar, Yong Ma, Ming Chen, Ximing Ren, Peter E. Kremer, Brian D. Gerardot, Mohammad R. Taghizadeh, Gerald S. Buller and Xianzhong Chen, “Metasurface for characterization of the polarization state of light”, OPTICS EXPRESS, Vol.23, No.8, pp. 10272-10281, (2015)
[3] Ye Feng Yu, Alexander Y. Zhu, Ramon Paniagua-Dominguez, Yuan Hsing Fu, Boris Luk’yanchuk and Arseniy I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser & Photonics Reviews, Vol.9, No.4, pp. 412–418, (2015)
[4] Zhong Chen, Fei Yan, Mehrdad Negahban, “Extremely thin reflective metasurface for low-frequency underwater acoustic waves: Sharp focusing, self-bending, and carpet cloaking,” J. Appl. Phys. 130, 125304, (2020)
[5] Ju Young Kim, Hyowook Kim, Bong Hoon Kim, Taeyong Chang, Joonwon Lim, Hyeong Min Jin, Jeong Ho Mun, Young Joo Choi, Kyungjae Chung, Jonghwa Shin, Shanhui Fan and Sang Ouk Kim, “Highly tunable refractive index visible-light metasurface from block copolymer self-assembly,” Nat Commun., Vol.7, 12911, (2016)
[6] Cheng Zhang, Shawn Divitt, Qingbin Fan, Wenqi Zhu, Amit Agrawal, Yanqing Lu, Ting Xu and Henri J. Lezec, “Low-loss metasurface optics down to the deep ultraviolet region,” Light: Light Sci Appl., Vol.9, No.55, (2020)
[7] Gun-Yeal Lee, Gwanho Yoon, Seung-Yeol Lee, Hansik Yun, Jaebum Cho, Kyookeun Lee, Hwi Kim, Junsuk Rhob, and Byoungho Lee, “Complete amplitude and phase control of light using broadband holographic metasurfaces,” Nanoscale, Vol.10, No.9, pp. 4237-4245(2018)
[8] Xueqian Zhang, Zhen Tian, Weisheng Yue, Jianqiang Gu, Shuang Zhang, Jiaguang Han and Weili Zhang , "Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities," Advanced Materials, vol. 25, no. 33, pp. 4567-4572. (2013)
[9] Abdoulaye Ndao, Liyi Hsu, Jeongho Ha, Jun-Hee Park, Connie Chang-Hasnain &Boubacar Kanté, “Octave bandwidth photonic fishnet-achromatic metalens,” Nat Commun., 11, 3025, (2020)
[10] Erez Hasman, Vladimir Kleiner, Gabriel Biener and Avi Niv,“Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett., 82, pp. 328–330, (2003)
[11] Chen-Yi Yu, Qiu-Chun Zeng, Chih-Jen Yu, Chien-Yuan Han and Chih-Ming Wang, “Scattering Analysis and Efficiency Optimization of Dielectric Pancharatnam-Berry-Phase Metasurface,” Nanomaterials, 11, (2021)
[12] Mykhailo Tymchenko, J. Sebastian Gomez-Diaz, Jongwon Lee, Nishant Nookala, Mikhail A. Belkin, and Andrea Alù, “Gradient Nonlinear Pancharatnam Berry Metasurfaces,” Physical Review Letters. 115. (2015)
[13] Bo Han Chen, Pin Chieh Wu, Vin-Cent Su, Yi-Chieh Lai, Cheng Hung Chu, I Chen Lee, Jia-Wern Chen, Yu Han Chen, Yung-Chiang Lan, Chieh-Hsiung Kuan, and Din Ping Tsai, "GaN Metalens for Pixel-Level Full-Color Routing at Visible Light," Nano Letters, vol.17, no.10, pp. 6345-6352. (2017)
[14] Ming Kang, Tianhua Feng, Hui-Tian Wang and Jensen Li, “Wave front engineering from an array of thin aperture antennas”, OPTICS EXPRESS, Vol.20, No.14, pp. 15882-15890, (2012)
[15] Wei Ting Chen, Alexander Y. Zhu, Jared Sisler, Yao-Wei Huang, Kerolos M. A. Yousef, Eric Lee, Cheng-Wei Qiu and Federico Capasso, “Broadband Achromatic Metasurface-Refractive Optics”, Nano Lett., 18, pp. 7801−7808, (2018)
[16] Wei Ting Chen, Alexander Y. Zhu, Vyshakh Sanjeev, Mohammadreza Khorasaninejad, Zhujun Shi, Eric Lee and Federico Capasso, “A broadband achromatic metalens for focusing and imaging in the visble,” Nature NanoTechnology, Vol.13, pp. 220-226, (2018)
[17] Rajath Sawant, Daniel Andren, Renato Juliano Martins, Samira Khadir, Ruggero Verre, Mikael Kall, AND Patrice Genevet, “Aberration-corrected large-scale hybrid metalenses,” Vol 8, pp. 1405-1411, (2021)
[18] Xingjie Ni, Zi Jing Wong, Michael Mrejen, Yuan Wang, Xiang Zhang, “An ultrathin invisibility skin cloak for visible light,” Science, Vol. 349, pp. 1310-1314, (2015)
[19] Wen-Qian Ji, Qi Wei1, Xing-Feng Zhu and Da-Jian Wu, “3D acoustic metasurface carpet cloak based on groove structure units,” J. Phys. D: Appl. Phys. 52, (2019)
[20] Hongchen Chu, Qi Li, Bingbing Liu, Jie Luo, Shulin Sun, Zhi Hong Hang, Lei Zhou and Yun Lai, “A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials,” Light Sci Appl., 7, 50, (2018)
[21] Willie S. Rockward and Donald C. O’Shea, “Crossed phase gratings with diffractive optical elements”, APPLIED OPTICS, Vol.37, pp. 5075-5086, (1998)
[22] Urs U. Graf and Stefan Heyminck, “Fourier gratings as submillimeter beam splitters,” in IEEE Transactions on Antennas and Propagation, Vol.49, No.4, pp. 542-546, (2001)
[23] David George, Voelz, Computational Fourier Optics, SPIE PRESS, Washington USA, 2011
[24] Ze’ev Bomzon, Gabriel Biener, Vladimir Kleiner, and Erez Hasman, “Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength grating”, OPTICS LETTERS, Vol.27, No.13, pp. 1141-1143, (2002)
[25] T. van Dijk, H.F. Schouten, W. Ubachs, and T.D. Visser, “The Pancharatnam-Berry phase for non-cyclic polarization changes”, OPTICS EXPRESS, Vol.18, No.10, pp. 10796-10804, (2010)
[26] 周宏宇,「以時域有限差分法研究色散介質及其光傳播行為」,國立中央大學,碩士論文,民國109年。
[27] Jean-Pierre Berenger, "A Perfectly Matched Layer for the Absorption of Electromagnetic Waves," Journal of Computational Physics, 114, pp. 185-200, (1994)
[28] Fan Yang, Ji Chen, Rui Qiang, and Atef Elsherbeni, “FDTD Analysis of Periodic Structures at Arbitrary Incidence Angles: A Simple and Efficient Implementation of Periodic Boundary Conditions,” 2006 IEEE Antennas and Propagation Society International Symposium, pp. 2715-2718, (2006)
[29] Jaakko S. Juntunen, and Theodoros D. Tsiboukis, “Reduction of Numerical Dispersion in FDTD Method Through Artificial Anisotropy,” in IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 4, pp. 582-588, (2000)
[30] L. Gao, F. Lemarchand, M. Lequime, “Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs,” Journal of The European Optical Society-Rapid Publications, 8, (2013)
[31] T. Kawashima, H. Yoshikawa, S. Adachi. “Optical properties of hexagonal GaN,” J. Appl. Phys. 82, pp. 3528–3535. (1997)
指導教授 王智明(Chih-Ming Wang) 審核日期 2022-11-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明