博碩士論文 109226015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.145.186.6
姓名 蕭孟庭(Meng-Ting Hsiao)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 積體非週期晶疇極化反轉鈮酸鋰波導晶片作為電光調制自發參量下轉換偏振相依光子對之研究
(Study of electro-optically controlled polarization-correlated spontaneous parametric down-conversion photon pairs based on aperiodically poled lithium niobate waveguides)
相關論文
★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings★ 半導體雷射泵浦內建式Q-調制Nd:MgO:PPLN雷射之研究
★ 主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究★ 以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究
★ 非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波長濾波器及倍頻多波長濾波器★ 非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻和模態轉換器之研究
★ 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件★ 退火式質子交換波導PPLN電光調制TM模態轉輻射偏振態之研究
★ 高效率雙Nd:YVO4 雷射和頻黃光產生系統★ 以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射
★ 以單塊二維週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調制器和腔內光參量振盪器★ 綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究
★ 以單晶片串級式週期性準相位匹配波長轉換器與非週期性準相位匹配電光偏振模態轉換器達成主動式調制窄頻輸出光參量振盪器之研究★ 單片非週期性晶疇極化反轉鈮酸鋰同時作為Nd:YVO4雷射Q-調制和腔內光參量產生之研究
★ 準相位匹配二倍頻軟質子交換鎂摻雜鈮酸鋰波導研究★ 以雙體積全像布拉格光柵及二維週期性晶疇極化反轉鈮酸鋰於Nd:YVO4雷射內達成脈衝式窄頻光參量振盪器之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,透過基因演算法(Genetic algorithm, GA)設計一非週期晶疇極化反轉之鈮酸鋰結構(Aperiodically poled lithium niobite, APPLN),並套用在鈦擴散波導之結構中,此結構包含產生光子對的自發參量下轉換(Spontaneous parametric down-conversion, SPDC),以及寬頻之電光偏振模態耦合器(Electro-optical polarization mode converter, EO-PMC),而產生的光子對為正交偏振(Type-II),再利用電光偏振模態耦合器將此正交偏振之光子對轉換成互為相反偏振之狀態,藉此消除光子在晶片內部傳遞所造成的時間延遲,進而達成單一結構同時進行兩種非線性轉換過程,在模擬上使用基因演算法來優化結構,其全域之搜索能力佳,自由度較大,再利用半導體製程的方法實際製作出此晶片,隨後進行量測。
  首先進行空間模態量測,以及古典之倍頻(Second harmonic generation, SHG)量測與電光偏振模態耦合器量測,本研究中,利用鈦擴散波導上之20mm之非週期極化反轉之結構,在相位匹配溫度為95°C時,倍頻產生之波峰值為1571.2nm,當施加y方向上電壓為60伏特時,電光偏振模態耦合器轉換之波長範圍為1564.1~1574.6nm,在波長重疊之處其轉換效率可達96%,於此證明在古典量測中兩者可重疊;接著進行量子之巧合計數(Coincidence counting)量測以及Hong-Ou-Mandel干涉實驗,並確認自發參量下轉換之信號與閒置頻譜在溫度為107°C時,兩者波峰約為1569nm幾乎疊合後,進行雙光子干涉量測,本實驗得出其可見度為82.3%±1.7%,結果顯示光子有良好的干涉程度,最後使古典量測電光偏振模態耦合器的結果與自發參量下轉換兩者進行整合,將下轉換產生的偏振正交光子對利用電光偏振模態耦合器調製其偏振以消除兩個偏振光因折射率不同而在晶體內部產生的時間延遲,並透過實驗得以驗證。
未來在晶體結構上可做進一步改善,將重新設計波導線寬給定一個範圍,並可配合目前擁有的雷射光源,使自發參量下轉換與電光偏振模態耦合器可在波長約為1569nm處重疊,達到利用單一晶片即能產生一對偏振糾纏之光子對。
摘要(英) In this paper, the aperiodic domain inversion structure in lithium niobite is designed by genetic algorithm (GA), and applied to the structure of titanium diffusion waveguide. This structure includes spontaneous parametric down-conversion (SPDC) to generate photon pairs, and a broadband electro-optical polarization mode converter (EO-PMC). The generated photon pairs are orthogonal polarization, and the EO-PMC is used to convert the orthogonal polarization photon pairs into the polarizatoin states which are opposite to each other. Thereby eliminating the time delay caused by the transmission of photons inside the chip. Therefore, achieve a single structure and performing two nonlinear conversion processes at the same time. In the simulation, the genetic algorithm is used to optimize the structure, which has better search ability in the global and a large degree of freedom. Then, the semiconductor process method is used to actually produce the chip, and then the measurement.
First, we measured the spatial mode, as well as the classical second harmonic generation (SHG) measurement and the EO-PMC measurement. In this study, a 20mm aperiodically poled lithium niobite(APPLN) structure on a Ti-diffused waveguide was used. When the phase matching temperature is 95°C, the peak value of the wave generated by SHG is 1571.2nm. When the applied voltage in the y direction is 60V, the wavelength range of EO-PMC conversion is 1564.1~1574.6 nm, and the conversion efficiency can reach 96% at the overlapping wavelengths. This proves that SHG and EO-PMC can overlap in classical measurements. Then, we do the coincidence counting measurement and Hong-Ou-Mandel interference experiment of quantum mechanics. Confirm the spectra of signal and idler of SPDC at 107°C, the two peaks are about 1569nm and almost overlap. Begin of measured two-photon interference, and this experiment found that its visibility was 82.3%±1.7%. The results show that photons have good interference performance. Finally, the results of classical measurements of EO-PMC and SPDC. The orthogonally polarization photon pairs of down-converted is modulated by EO-PMC to eliminate the time delay caused by the difference in refractive index between the two polarized lights inside the crystal and verified by experiments.
Further improvements can be made in the crystal structure in the future. To redesign the waveguide line width to give a range, and can compatible with our laser light sources. Enables SPDC and EO-PMC to overlap at wavelengths around 1569 nm. That can achieve a pair of polarization-entangled photon pairs were generated using a single chip.
關鍵字(中) ★ 鈮酸鋰波導
★ 自發參量下轉換
★ 偏振相依光子對
★ 電光調制
關鍵字(英) ★ lithium niobate waveguides
★ spontaneous parametric down-conversion
★ polarization-correlated photon pairs
★ electro-optically
論文目次 中文摘要 VI
ABSTRACT VII
致謝 IX
目錄 X
圖目錄 XIII
表目錄 XVIII
第一章 緒論 1
1.1 雷射與量子光學發展與歷史 1
1.2 鈮酸鋰晶體 2
1.3 研究動機 5
1.4 內容概要 5
第二章 理論 7
2.1 相位匹配 7
2.2 準相位匹配 9
2.3 自發參量下轉換 11
2.3.1 Type-II 14
2.3.2 偏振糾纏態[14] 14
2.3.3 Hong–Ou–Mandel干涉[18] 16
2.4 電光效應 25
2.4.1 電光效應 25
2.4.2 電光偏振模態耦合器 27
第三章 模擬與元件設計 31
3.1 基因演算法 31
3.2 模擬退火法 41
3.3 演算法比較 43
3.4 元件設計理論 44
3.4.1 自發參量下轉換在非週期晶疇極化反轉結構之模擬機制 46
3.4.2電光偏振調制在非週期晶疇極化反轉結構之模擬機制[33] 47
3.4.3 基因演算法流程與參數設定 49
3.5 模擬結果 51
3.5.1 非週期晶疇結構之模擬結果 51
3.5.2 晶片設計 55
第四章 晶片製程 56
4.1 波導製程 56
4.1.1 波導製程之黃光製程 56
4.1.2 鈦擴散波導製程 57
4.2 極化反轉 60
4.2.1 晶疇極化反轉之黃光製程 61
4.2.2 外加高電壓反轉晶疇製程 62
4.3 電極製程 69
4.3.1 電極黃光製程 70
4.3.2 鍍電極製程 71
第五章 量測結果與分析 73
5.1 波導特性量測 73
5.1.1 稜鏡耦合儀 73
5.1.2 傳播損耗量測 74
5.2古典量測 77
5.2.1 二次諧振波量測 77
5.2.2 電光偏振轉換量測 80
5.2.3合併古典量測結果 83
5.3 量子量測 83
5.3.1 巧合計數量測 83
5.3.2 自發參量下轉換之頻譜量測 86
5.3.3 Hong–Ou–Mandel雙光子干涉量測 87
5.3.4 巧合計數並施加電壓之量測結果 91
第六章 結論與未來展望 99
6.1 結論 99
6.2 未來展望 99
參考文獻 102
附錄一 107
附錄二 109
參考文獻 [1] M. Planck, “On the Law of Distribution of Energy in the Normal Spectrum”. Annalen der Physik. 4: p. 533-533, 1901.
[2] S. E. Miller, “Integrated Optics. Introduction”. Bell System Tech J. 48(7): p. 2059-2069, 1969.
[3] G. Blaylock, “The EPR paradox, Bell’s inequality, and the question of locality”. American Journal of Physics. 78(1): p. 111-120, 2010.
[4] W. H. Zachariasen, “Skr. Norske Vid-Ada.,” Oslo, Mat. Naturv., 1928.
[5] A. A. Ballman, “Growth of Piezoelectric and Ferroelectric Materials by the CzochraIski Technique”. Journal of the American Ceramic Society. 48(2): p. 112-113, 1965.
[6] D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, n_e, in congruent lithium niobate”. Optics Letters. 22(20): p. 1553-1553, 1997.
[7] S. Tanzilli et al., “PPLN waveguide for quantum communication”. European Physical Journal D. 18(2): p. 155-160, 2002.
[8] T. Nosaka, B. K. Das, M. Fujimura, and T. Suhara, “Cross-polarized twin photon generation device using quasi-phase matched LiNbO3 waveguide”. IEEE Photonics Technology Letters. 18(1): p. 124-126, 2006.
[9] P. Y. Yariv, “Optical Waves in Crystals: Propagation and Control of Laser Radiation”. 1983.
[10] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric”. Physical Review. 127(6): p. 1918-1939, 1962.
[11] Y. C. Huang, “Principles of Nonlinear Optics Course Reader.”. Institute of Photonics Technologies / Department of Electrical Engineering, National Tsinghua University, Hsinchu, Taiwan2007.
[12] R. L. Sutherland, “Handbook of Nonlinear Optics”. 2nd ed., New York: Marcel Dekker Inc., 2003.
[13] P. L. Sources, “Engineering Spectrally Pure Quantum States with SPDC using Periodically Poled Crystals and Pulsed Laser Sources”. 2015.
[14] T. Suhara, H. Okabe, and M. Fujimura, “Generation of polarization-entangled photons by type-II quasi-phase-matched waveguide nonlinear-optic device”. IEEE Photonics Technology Letters. 19(14): p. 1093-1095, 2007.
[15] C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference”. Physical Review Letters. 59(18): p. 2044-2046, 1987.
[16] A. Ling, “ENTANGLED STATE PREPARATION FOR OPTICAL QUANTUM COMMUNICATION: Creating and characterizing photon pairs from Spontaneous Parametric Down Conversion inside bulk uniaxial crystals”. PhD Thesis, 2008.
[17] D. A. Kleinman, “Theory of optical parametric noise”. Physical Review. 174(3): p. 1027-1041, 1968.
[18] G. Xuesong, “QUANTUM NONLINEAR OPTICS”. PhD Thesis, 2019.
[19] I. Šolc, “Birefringent Chain Filters”. Journal of the Optical Society of America. 55(6): p. 621-621, 1965.
[20] J. Y. Lai, Y. J. Liu, H. Y. Wu, Y. H. Chen, and S. D. Yang, “Nonperiodic optical superlattice optimized by genetic algorithm for engineered multiwavelength conversion”. Optics InfoBase Conference Papers: p. 7-8, 2010.
[21] J. H. Holland, “Genetic algorithms”. Scientific American. 267(1): p. 66-72, 1992.
[22] 林學汕, “以非週期性晶疇極化反轉鈮酸鋰作為電光可調腔內泵浦多波長光參量振盪器之研究,” 國立中央大學光電工程所碩士論文, 2019.
[23] W. Mei-ling, F. Zheng-yi, and C. Yu-hsan, “A Preliminary Application of Genetic Algorithm on Slope Stability Analysis”. Soil and Water Conservation. 42(1): p. 65-82, 2010.
[24] T. Pencheva, K. Atanassov, and A. Shannon, “Modelling of a Roulette Wheel Selection Operator in Genetic Algorithms Using Generalized Nets”. Tenth Int. Workshop on Generalized Nets, (May 2014): p. 1-7, 2009.
[25] F. Herrera, M. Lozano, and A. M. Sánchez, “A taxonomy for the crossover operator for real-coded genetic algorithms: An experimental study”. International Journal of Intelligent Systems. 18(3): p. 309-338, 2003.
[26] P. Andrey, “Genetic Algorithm For Optimization”. User Manual, 2005.
[27] S. E. H. Randy L Haupt, “Practical Genetic Algorithms, Second Edition”. John Wiley & Sons, 2003.
[28] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing”. Science. 220(4598): p. 671-680, 1983.
[29] 王泰傑, “以非週期性晶疇極化反轉鈮酸鋰晶體實現多波長光參量振盪器之電光選頻研究,” 國立中央大學光電工程所碩士論文, 2019.
[30] J. W. Goodman, “Introduction to Fourier Optics”. 3rd ed. ed.: Englewood, Colo. : Roberts & Co., 2005.
[31] B. Y. Gu, Y. Zhang, and B. Z. Dong, “Investigations of harmonic generations in aperiodic optical superlattices”. Journal of Applied Physics. 87(11): p. 7629-7637, 2000.
[32] J. Jiang, J. Zhang, K. Wang, X. Xiao, and Z. Zhang, “Broadband second-harmonic generation in APPLN with group-velocity matching”. Optics Communications. 403(June): p. 217-221, 2017.
[33] C. H. Lin, Y. H. Chen, S. W. Lin, C. L. Chang, Y. C. Huang, and J. Y. Chang, “Electro-optic narrowband multi-wavelength filter in aperiodically poled lithium niobate”. Optics Express. 15(15): p. 9859-9859, 2007.
[34] 蘇文銓, “以非週期晶疇極化反轉 鈦擴散鈮酸鋰波導晶片產生偏振糾纏光子對,” 國立中央大學光電工程所碩士論文, 2020.
[35] K. Nakamura, H. Ando, and H. Shimizu, “Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment”. Applied Physics Letters. 50(20): p. 1413-1414, 1987.
[36] 呂其孟, “以非週期性晶疇極化反轉鈮酸鋰達成連續式或主動式Q-調制雙波長Nd:YVO4 雷射電光選頻 之研究,” 國立中央大學光電工程所碩士論文, 2019.
[37] K. S. Chiang, “Construction of Refractive-Index Profiles of Planar Dielectric Waveguides from the Distribution of Effective Indexes”. Journal of Lightwave Technology. 3(2): p. 385-391, 1985.
[38] R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators”. Applied Physics B Photophysics and Laser Chemistry. 36(3): p. 143-147, 1985.
[39] U. Herzog, M. Scholz, and O. Benson, “Theory of biphoton generation in a single-resonant optical parametric oscillator far below threshold”. Physical Review A - Atomic, Molecular, and Optical Physics. 77(2): p. 1-8, 2008.
[40] A. M. Brańczyk, “Hong-Ou-Mandel Interference”. p. 1-17, 2017.
[41] Y. Ming, A.-h. Tan, Z.-j. Wu, and Z.-x. Chen, “Generation and manipulation of entangled photons in a domain-engineered lithium niobate waveguide”.
[42] J. Shi, X. Chen, Y. Xia, and Y. Chen, “Polarization control by use of the electro-optic effect in periodically poled lithium niobate”. Applied Optics. 42(28): p. 5722-5722, 2003.
[43] J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, “Photonic State Tomography”. Advances in Atomic, Molecular and Optical Physics. 52(05): p. 105-159, 2005.
[44] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits”. Physical Review A - Atomic, Molecular, and Optical Physics. 64(5): p. 15-15, 2001.
[45] O. Bayraktar, “Quantum-Polarization State Tomography”. 2016.
指導教授 陳彥宏(Yen-Hung Chen) 審核日期 2022-12-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明