博碩士論文 109327022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.117.230.50
姓名 莊承翰(CHUANG CHENG-HAN)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 應用螢光顯微技術強化RDL線路檢測系統
(Application of Fluorescence Microscopy Technology to Enhance RDL Circuit Inspection System)
相關論文
★ MOCVD晶圓表面溫度即時量測系統之開發★ MOCVD晶圓關鍵參數即時量測系統開發
★ 基於人工智慧之PCB瑕疵檢測技術開發★ 基於 YOLO 物件辨識技術之 PCB 多類型瑕疵檢測模型開發
★ 全場相位式表面電漿共振技術★ 波長調制外差式光柵干涉儀之研究
★ 攝像模組之影像品質評價系統★ 雷射修整之高速檢測-於修整TFT-LCD SHORTING BAR電路上之應用
★ 光強差動式表面電漿共振感測術之研究★ 準共光程外差光柵干涉術之研究
★ 波長調制外差散斑干涉術之研究★ 全場相位式表面電漿共振生醫感測器
★ 利用Pigtailed Laser Diode 光學讀寫頭在角度與位移量測之研究★ 複合式長行程精密定位平台之研究
★ 紅外波段分光之全像集光器應用★ 太陽光譜分光器之設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) PCB廠商在生產RDL產品時的影像檢驗中,遇到了因使用透明基材(介電材),導致線路層之間混淆,進而無法對當下製程做自動化檢驗的困擾。本篇的研究目的為開發一套濾除RDL產品中,因透明基材顯現出的下層線路干擾,並在上層線路與背景中呈現高對比度的影像擷取系統。
在經由一系列的測試後,本研究成功的透過RDL的結構中基材的螢光反應,開發了「應用螢光顯微技術強化RDL線路檢測系統」用來改善AOI在RDL線路檢測時失效的問題。在實驗中,利用基材螢光反應的特性,將原檢測系統基於影像中線路與背景色差產生的對比,替換成為影像中兩者間螢光表現差異,並搭配短波長光線於透明基材中快速衰減的特性,避免了線路層與層之間的混淆。在檢測的影像的改良上,上層線路與背景的對比度由原先的5 % ~ 10 %之間增加到了80 %以上,而主要造成干擾的前製程影像也由原本的47 %降低為20 %以下,大幅的降低了檢測上層線路提取的難度,使得RDL線路檢測化為可能。
本研究開發之螢光影像擷取系統,目前已可提供線路上最為重要的短路及斷路檢測,並透過實際的樣品測試證實其可行性。在部分特定的RDL線路檢測方面,本研究也根據螢光顯微鏡的研究以及建置經驗,提出了雙影像的影像擷取方法,此方法目前僅停留在設計階段,尚未完成架構及可行性驗證。
摘要(英) During the image inspection of RDL products, PCB manufacturers encountered the problem of confusion between circuit layers due to the use of transparent substrates (dielectric materials), which prevented automatic inspection of the current manufacturing process. The research purpose of this article is to develop an image capture system that filters out the interference of the lower layer circuit due to the transparent substrate in the RDL product, and presents a high contrast between the upper layer circuit and the background.
After a series of tests, this study successfully developed the "enhanced RDL circuit inspection system using fluorescence microscopy technology" through the fluorescent reaction of the substrate in the RDL structure to improve the failure of AOI in RDL circuit inspection. question. In the experiment, using the characteristics of the fluorescent reaction of the substrate, the original detection system based on the contrast between the color difference between the circuit and the background in the image was replaced by the difference in fluorescence between the two in the image, and short-wavelength light was used in the transparent substrate. The characteristic of fast attenuation avoids confusion between circuit layers and layers. With regard to the improvement of the detected image, the contrast between the upper circuit and the background has increased from 5% to 10% to over 80%, and the pre-process image which mainly caused interference has also been reduced from 47% to less than 20%. It greatly reduces the difficulty of detecting upper-layer line extraction, making RDL line detection possible.
The fluorescent image capture system developed in this research can provide the most important short circuit and open circuit detection on the line, and its feasibility has been confirmed through actual sample tests. In terms of some specific RDL circuit detection, this study also proposes a dual-image image capture method based on the research and construction experience of the fluorescent microscope. This method is currently only in the design stage, and has not yet completed the structure and feasibility verification.
關鍵字(中) ★ 螢光顯微鏡
★ RDL
★ 光致發光
關鍵字(英) ★ Fluorescence microscope
★ RDL
★ Photoluminescence
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 VIII
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 3
1-3 研究初期成果 4
1-3-1 暗場照明 5
1-3-2 短波長照明 8
1-3-3 RDL的螢光反應 9
1-4 文獻回顧 12
1-4-1 螢光燈PCB自動檢測系統 12
1-4-2 螢光顯微鏡之設計重點 15
1-5 論文架構 17
第二章 實驗原理 18
2-1 對比度 18
2-2 光致發光 18
2-3 濾光片規格定義 19
2-4 影像處理 21
2-5 小結 25
第三章 系統架構 26
3-1 光源 26
3-1-1 光源選用 26
3-1-2光源架構 27
3-3 濾光片 31
3-3-1 激發光濾光片(EX) 31
3-3-2 二色相濾光片(DM) 32
3-3-3 發射光濾光片(EM) 32
3-4 成像系統 34
3-5 對比度的計算 37
3-6 上層線路遮罩製作流程 39
3-7 小結 40
第四章 實驗結果與改良 41
4-1 檢驗項目 41
4-2 螢光影像分析 43
4-2-1 第一版螢光顯微鏡 43
4-2-2 長通濾光片影像 43
4-2-3 帶通濾光片影像 44
4-2-4 第一版螢光顯微鏡小結 45
4-2-5改良螢光顯微鏡設計 47
4-3 RDL異常項目檢驗測試 49
4-4 小結 51
第五章 銅面缺陷檢測系統設計 52
5-1 雙影像法 52
5-2 雙影像架構 54
5-3 小結 56
第六章 結論與未來展望 57
6-1 結論 57
6-2 未來展望 57
參考文獻 58
參考文獻 [1] J. H. Lau, “Fan-Out Wafer-Level Packaging,” Springer (2018).
[2] N. Hayao, “NTI 100: The Unsinkable, Unstoppable PCB Market.” (2022).
https://www.pcdandf.com/pcdesign/index.php/editorial/menu-features/16699-the-unsinkable-unstoppable-pcb-market
[3] 林定皓,「電路板電氣測試與AOI檢驗技術簡介.」,臺灣電路板協會 (2008).
[4] 102年度印刷電路板業之製造業原物料耗用通常水準調查報告.
https://www.ntbsa.gov.tw
[5] 王家鴻,「Approach of a Reliable Solder Bump with RDL Structure for WLCSP Application Study.」,國立交通大學,碩士論文,民國99年.
[6] G. R. Fowles, "Introduction to Modern optics," 2nd edition, Dover (1968).
[7] J. Kapuscinski, “DAPI: a DNA-specific fluorescent probe.” Biotech Histochem, 70:220–233 (1995).
[8] 顯微鏡的螢光系統-濾片基本規格判讀.
https://www.lin.com.tw/news/24G6GV73.html
[9] H. Yasuhiko, D. Hideaki, K. Koichi, and I. Tadashi, “A System for PCB Automated Inspection Using Fluorescent Light,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 69–78 (1988).
[10] J. F. Waymouth, “Handbook of Advanced Lighting Technology,” Springer (2017).
[11] J. Lichtman, J. A. Conchello, “Fluorescence Microscopy,” Nature Methods, 2:910–919, (2006).
[12] Joseph R. Lakowicz, “Principles of Fluorescence Spectroscopy,” Springer (2006).
[13] A. A. Michelson, “Studies in Optics” U. Chicago Press (1927).
[14] R. C. Gonzalez, R. E. Woods, “Digital Image Processing,” 4th edition, Pearson (2018).
[15] Y. Pang, M. Sun, X. Jiang, X. Li, "Convolution in Convolution for Network in Network," in IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 5, pp. 1587-1597 (2018).
[16] E. S. Gedraite, M. Hadad, “Investigation on the effect of a Gaussian Blur in image filtering and segmentation,” Proceedings ELMAR-2011, pp. 393-396 (2011).
[17] R. M. Haralick, S. R. Sternberg, X. Zhuang, "Image Analysis Using Mathematical Morphology," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 4, pp. 532-550 (1987).
[18] Daniel Malacara, “Geometrical and Instrumental Optics,” Academic Press (1988).
[19] 二值化黑白影像.
https://steam.oxxostudio.tw/category/python/ai/opencv-threshold.html
[20] 林良平, “光學顯微鏡之最新進展-無限遠補正光學系統. ” 科儀新知第二十二卷第四期 90.2
[21] 顯微物鏡(Edmund Optics).
https://www.edmundoptics.com/p/20x-eo-m-plan-apo-long-working-distance-infinity-corrected/16536/
[22] Bill Lubanovic 著,賴義民 譯,「精通Python」,基峯 (2020).
[23] 李立宗,“科班出身的 AI人必修課:OpenCV 影像處理 使用 Python,” ,深智數位 (2019).
指導教授 李朱育(Ju-Yi Lee) 審核日期 2023-2-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明