博碩士論文 108222002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.216.151.74
姓名 劉威呈(Wei-Cheng Liu)  查詢紙本館藏   畢業系所 物理學系
論文名稱 優化雷射電漿加速器衝擊波注入電子品質之研究
(Optimizing the Electron Quality of Laser Plasma Accelerator by Shock Wave Injection)
相關論文
★ 在雷射尾流場加速器中利用震波產生單能電子束
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自由電子雷射是一種以高品質電子束作為介質,讓接近光速的電子束在周期性磁 場中受到激發且放大電磁輻射的新型雷射光源,這需要高品質和高穩定的電子束作為 光源,開發加速器便成為開發自由電子雷射不可或缺的環節,雷射電漿交互作用中電 子的加速已經進行了二十多年的實驗研究,這種加速器中的加速電場是傳統射頻加速 器的 1000 倍,能夠在數釐米內將電子加速至數 GeV,這意味著能將過去數公里長的傳 統直線加速器縮短近 1000 倍,被廣泛認為是能夠替代傳統射頻加速器的方案。目前在 厘米等級的雷射電漿波電子加速器,已經被證實可以將電子加速至十億電子伏特,並 具備發散角小穩定性高的電子脈衝,有很大的潛力投入自由電子雷射應用。本論文所 呈現的是透過二維粒子式模擬(Particle-In-Cell simulation)來研究電漿尾流場加速衝擊 波注入的物理機制。當前電漿源設計方面有著許多不同的課題。為達到自由電子雷射 所要求的電子能量擴散低於 0.1%,本論文的重點是控制注入以及優化加速電子的品質, 以及研究此種注入的各項特徵。第一部分是利用稱為衝擊波前沿的超音速現象來刺激 瞬間注入。我們調整雷射電漿參數將加速電子優化至單能,模擬中加入高密度區間來 微幅調整雷射強度,取得最佳化的參數,並討論各項參數如何有效的降低加速電子束 之能量擴散。
第二部分,我們發現特定條件下的注入方式具有不同於多數研究的衝擊波注入方 式,也就是能夠捕捉行經電漿波邊界的電子,且這些電子初始位置分布也更密集,這 意味著能量擴散也更小。為了比較這兩種機制,我們將重現普遍研究常見的衝擊波注入,並且透過軌跡追蹤比較兩種注入的加速電子性質差異。利用這樣的注入機制配合 傾斜角度的衝擊波能產生明顯的不對稱注入,還能夠微幅度的提升電子在加速器中的 振幅,有望成為提升 betatron radiaton 的一種方法。本研究結果顯示,經優化的電子束 成功在 640 MeV 的峰值能量下,具備小於 1% 的能量擴散,相比優化前下降了 80%。
摘要(英) Free electron laser (FEL) is a new type of laser light source that uses high-quality electron beams as the medium to stimulate and amplify electromagnetic radiation in a periodic magnetic field. FEL requires high-quality and high-stable electron beams as driving sources, and the de- velopment of accelerators has become an indispensable part in the development of free electron lasers. Laser wakefield acceleration has been studied for more than 20 years. The electric accel- eration field in this accelerator is 1000 times that of the traditional RF cavity, being capable of accelerating electrons to several GeV within a few centimeters. This implies that conventional linear accelerators that few kilometers can be shortened nearly 1,000 times. Therefore, LWFA is widely believed to be a solution that can replace conventional RF accelerators. At present, laser- plasma accelerators at the centimeter level have been proven to accelerate electrons to 1 billion electron volts with small divergent angle and high stability, with great potential to be applied in free electron laser applications.This thesis presents the physical mechanism of accelerating shock wave injection in the laser plasma wakefield through two-dimensional Particle-In-Cell simulation.
In order to achieve the electron energy spread required by free electron lasers below 0.1 %, this thesis focuses on controlling the injection and optimizing the quality of accelerated electrons and study the characteristics of this injection. The first part is using the supersonic phenomenon, the front of the shock wave, to stimulate instantaneous injection.
The accelerated electrons are optimized to a monoenergeitc beam by adjusting the laser plasma parameters, and a high-density region is added to the simulation to fine-tune the laser intensity to obtain the optimized parameters, then discuss how each parameter can effectively reduce the energy spread of the accelerated electron beam.
In the second part, it is found that the injection method under certain conditions is different from the shock front injection method of most studies, that is, it can capture electrons passing through the plasma wave boundary, and the initial position distribution of these electrons is also more concentrated, which means that the energy spread is also smaller. In order to compare these two injections, we will reproduce the commonly studied shock front injection, and compare the difference in the accelerated electron properties of the two injections through trajectory tracing. Utilizing such an injection mechanism with shock waves with a tilted angle can produce obvious asymmetric injection, and can also slightly increase the amplitude of electrons in the accelerator, which is expected to become a method to enhance betatron radiation.
The result shows that the optimized electron beam at dephasing has an energy spread of less than 1%, which is a decrease of 80% compared with before optimization. In addition, using this injection mechanism combined with the shock front at a tilted angle can produce apparent asymmetric injection, which may make the betatron radiation polarized.
關鍵字(中) ★ 雷射
★ 電漿
★ 加速器
★ PIC模擬
★ 2D
★ 雷射電漿尾場加速
★ 衝擊波注入
關鍵字(英) ★ laser
★ plasm
★ accelerator
★ laser wakefield
★ shock-front injection
論文目次 目錄
Page
口試委員審定書 i
致謝 iii
摘要 v
Abstract vii
目錄 ix
圖目錄 xiii
表目錄 xvii
第一章 緒論 1
1.1 雷射電漿加速器 1
1.2 自由電子雷射對電子源的限制 . 2
第二章 雷射電漿電子加速器概述 3
2.1 電漿與電漿波 .. 3
2.2 有質動力 . 5
2.3 電漿中的非線性效應 . 7
2.3.1 電漿色散關係 . 7
2.3.2 自壓縮 .. 9
2.3.3 自聚焦 10
2.4 雷射電漿波加速器的產生. . 12
2.5 泡泡結構與相位空間.. . 13
2.5.1 泡泡結構 . 13
2.5.2 相位空間 . 15
2.6 注入方式 . . 16
2.6.1 自注入 17
2.6.2 衝擊波注入 17
2.6.3 電子加載 . 17
2.7 Betatron 輻射 18
2.8 LWFA 實驗設計 . 18
2.9 PIC 模擬19
2.10 PIC 模擬設定 21
第三章 利用衝擊波注入達到單能電子束 25
3.1 模擬測試與分析 25
3.1.1 PPC 設定與測試.. 27
3.1.2 格點收斂測試.. . 27
3.2 電子加載優化 28
3.2.1 a0 對氣泡結構的影響. 31
3.2.2 電子加載優化減少能量擴散 32
3.2.3 優化自聚焦 34
3.3 討論. . 35
第四章 電漿波尾波側向注入機制 37
4.1 橫向注入和縱向注入的比較. 37
4.1.1 密度結構差異.. . 38
4.1.2 軌跡差異 . 38
4.2 傾斜注入的結果與表現.43
4.3 討論. . 44
參考文獻 47
附錄 A — 數據來源 51
A.1 儲存路徑 . . 51
A.2 分析程式 . . 55
參考文獻 [1] T. Tajima and J. M. Dawson. “Laser Electron Accelerator”. In: Phys. Rev. Lett. 43 (4 1979), pp. 267–270. DOI: 10.1103/PhysRevLett.43.267.
[2] Hyung Taek Kim et al. “Multi-GeV Laser Wakefield Electron Acceleration with PW Lasers”. In: AppliedSciences 11.13 (2021). ISSN: 2076-3417. DOI:10.3390/ app11135831.
[3] Emma, Paul, and L. C. Team. “First Lasing of the LCLS X-Ray FEL at 1.5 Å”. In: Particle Accelerator Conference (PAC 09). 2010, TH3PBI01.
[4] A. Modena et al. “Electron acceleration from the breaking of relativistic plasma waves”. In: Nature 377.6550 (1995), pp. 606–608. DOI: 10.1038/377606a0.
[5] Deacon et al. “First operation of a free-electron laser”. In: Physical Review Letters 38.16 (1977), p. 892.
[6] A. R. Maier et al. “Demonstration Scheme for a Laser-Plasma-Driven Free-Electron Laser”. In: Phys. Rev. X 2 (3 2012), p. 031019. DOI: 10.1103/PhysRevX.2.031019.
[7] Alexander Buck. “Advanced characterization and control of laser wakefield accelera- tion”. In: (2011), p. 144.
[8] Pavel Aleynikov and Boris N. Breizman. “Generation of runaway electrons during the thermal quench in tokamaks”. In: Nuclear Fusion 57.4 (2017), p. 046009. DOI: 10.1088/ 1741-4326/aa5895.
[9] Christian Koschitzki. “Injection mechanisms in Laser Wakefield Acceleration”. PhD the- sis. Humboldt U., Berlin, 2017. DOI: 10.18452/17760.
[10] Guillaume Genoud. “Laser-Driven Plasma Waves for Particle Acceleration and X-ray Production”. eng. PhD thesis. Lund University, 2011. ISBN: 978-91-7473-164-4. URL: https://lup.lub.lu.se/search/files/5248736/2157163.pdf.
[11] Brice Quesnel and Patrick Mora. “Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum”. In: Phys. Rev. E 58 (3 1998), pp. 3719–3732. DOI: 10.1103/PhysRevE.58.3719.
[12] Predhiman Kaw and John Dawson. “Relativistic Nonlinear Propagation of Laser Beams in Cold Overdense Plasmas”. In: The Physics of Fluids 13.2 (1970), pp. 472–481. DOI: 10.1063/1.1692942.
[13] W.B. Mori. “The physics of the nonlinear optics of plasmas at relativistic intensities for short-pulse lasers”. In: IEEE Journal of Quantum Electronics 33.11 (1997), pp. 1942– 1953. DOI: 10.1109/3.641309.
[14] Mahdi Habibi and Majid Davoodianidalik. “Self-Focusing of High-Power Laser Beam through Plasma”. In: High Power Laser Systems. Ed. by Masoud Harooni. Rijeka: Inte- chOpen, 2018. Chap. 10. DOI: 10.5772/intechopen.75036.
[15] Kim Ta Phuoc et al. “Betatron radiation from density tailored plasmas”. In: Physics of Plasmas 15.6 (2008), p. 063102.
[16] Paul Gibbon. Short pulse laser interactions with matter: an introduction. World Scien- tific, 2005.
[17] W. Lu et al. “Nonlinear Theory for Relativistic Plasma Wakefields in the Blowout Regime”. In: Phys. Rev. Lett. 96 (16 2006), p. 165002. DOI: 10.1103/PhysRevLett. 96.165002.
[18] J Luo et al. “Dynamics of boundary layer electrons around a laser wakefield bubble”. In: Physics of Plasmas 23.10 (2016), p. 103112.
[19] Jinguang Wang et al. “Small energy spread electron beams from laser wakefield accel- eration by self-evolved ionization injection”. In: Plasma Physics and Controlled Fusion 60.3 (2018), p. 034004. DOI: 10.1088/1361-6587/aaa4dc.
[20] Kosta Oubrerie et al. “Controlled acceleration of GeV electron beams in an all-optical plasma waveguide”. In: Light: Science & Applications 11.1 (2022), p. 180. DOI: 10. 1038/s41377-022-00862-0.
[21] K. Schmid et al. “Density-transition based electron injector for laser driven wakefield accelerators”. In: Phys. Rev. ST Accel. Beams 13 (9 2010), p. 091301. DOI: 10.1103/ PhysRevSTAB.13.091301.
[22] A. V. Brantov et al. “Controlled electron injection into the wake wave using plasma den- sity inhomogeneity”. In: Physics of Plasmas 15 (7 2008), pp. 1–10. ISSN: 1070664X. DOI: 10.1063/1.2956989.
[23] C. Rechatin et al. “Observation of beam loading in a laser-plasma accelerator”. In: Physical Review Letters 103 (19 2009), p. 194804. ISSN: 10797114. DOI: 10.1103/ PhysRevLett.103.194804.
[24] Clément Rechatin et al. “Characterization of the beam loading effects in a laser plasma accelerator”. In: New Journal of Physics 12.4 (2010), p. 045023.
[25] Antoine Rousse et al. “Production of a keV X-Ray Beam from Synchrotron Radiation in Relativistic Laser-Plasma Interaction”. In: Phys. Rev. Lett. 93 (13 2004), p. 135005. DOI: 10.1103/PhysRevLett.93.135005.
[26] P. Maine et al. “Generation of ultrahigh peak power pulses by chirped pulse amplifi- cation”. In: IEEE Journal of Quantum Electronics 24.2 (1988), pp. 398–403. DOI: 10. 1109/3.137.
[27] CGR Geddes et al. “Computational studies and optimization of wakefield accelerators”. In: Journal of Physics: Conference Series. Vol. 125. 1. IOP Publishing. 2008, p. 012002.
[28] Ricardo A Fonseca et al. “Exploiting multi-scale parallelism for large scale numeri- cal modelling of laser wakefield accelerators”. In: Plasma Physics and Controlled Fusion 55.12 (2013), p. 124011.
[29] Kane Yee. “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media”. In: IEEE Transactions on Antennas and Propagation 14.3 (1966), pp. 302–307. DOI: 10.1109/TAP.1966.1138693.
[30] Chet Nieter and John R Cary. “VORPAL: a versatile plasma simulation code”. In: Journal of Computational Physics 196.2 (2004), pp. 448–473.
[31] C Rechatin et al. “Characterization of the beam loading effects in a laser plasma ac- celerator”. In: New Journal of Physics 12.4 (2010), p. 045023. DOI: 10.1088/1367- 2630/12/4/045023.
[32] F Massimo et al. “Numerical studies of density transition injection in laser wakefield acceleration”. In: Plasma Physics and Controlled Fusion 59.8 (2017), p. 085004.
指導教授 周紹暐(Shao-Wei Chou) 審核日期 2023-1-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明