博碩士論文 104282602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:18.117.81.240
姓名 吉潘尼(Giovanni Jariol Paylaga)  查詢紙本館藏   畢業系所 物理學系
論文名稱 在球形圓洞中單顆人類間葉幹細胞的細胞週期、形態特徵與牽引力之量化研究
(Quantitative investigations on cell-cycle, morphological features, and traction stresses of single human mesenchymal stem cells in spherical microwells)
相關論文
★ 液態乳膠中微粒子在含有高分子鏈油滴表面上的堆疊★ 以溶膠-凝膠法製備有機無機混成相轉移材料微膠囊
★ 長DNA的Janus粒子★ 利用PDMS微流道做出三維的細胞培養
★ 新式細胞培養法:三維明膠鷹架★ 使用微流道在高流速與高油分率的狀態下製造水包油乳化液
★ Calibrating z distance for confocal microscope★ 羽軸的微結構與力學性質研究
★ Three-Dimensional Cellular Traction Force Measurement on a Flat Substrate★ 囊性形态的定量研究及其在顶端收缩中的意义
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們對細胞生物學的理解大多來自於細胞培養在二維 (2D) 平面基質的研究,但實際上體內的微環境是三維 (3D) 的。已知的是,細胞會通過牽引力 (traction force) 來感知微環境的機械性質並且做出反應,這是機械生物學這一快速發展領域的研究重點。然而,細胞如何感知維度 (dimensionality) 仍然未知。前人的研究顯示,如細胞貼覆面積、硬度、拉伸壓力和細胞體積等許多參數與培養在2D基質上有密切的關聯,這些參數會通過影響轉錄啟動子yes-associated-protein (YAP) 的所在位置而調控細胞增殖或幹細胞分化。相反地,這個機制在3D環境下會改變,因此3D細胞培養成為瞭解機械生物學的理想測試平臺,並為3D細胞培養系統提供更深入的理解。雖然3D細胞培養是為再生醫學和藥物篩選更佳的體內模擬微環境,但其複雜性和多樣性也使得數據的系統化和量化相當困難。這使得簡化3D細胞培養系統但保持維度性質有其必要性。在本篇論文中,我證明球形圓洞是研究3D機械生物學的有力工具。我們基於球形圓洞開發了3D拉伸力顯微鏡技術,並發現人類間充質幹細胞 (hMSCs) 培養在直徑較小的圓洞中,會通過減少核內轉錄啟動子 YAP 而出現細胞週期停滯。我們進行量化以了解在2D調節YAP的機制是否在3D系統也會發生。我們的數據顯示,拉伸壓力不會通過細胞核周圍的肌動蛋白傳遞,且不會導致細胞核扁平化。此外,在直徑較大的圓洞中,細胞具有更大的細胞體積、更大的拉伸應力,並且細胞貼覆面積與其細胞核體積之間有正相關。細胞體積的量化趨勢與在2D環境的前人研究結果不相同 [1]。然而,細胞核扁平度與核內 YAP 遷移和拉伸壓力呈負相關,表示出類似的趨勢但不如 2D 的情況那麼強。細胞形狀指數(cell shape index, CSI)與核內YAP遷移呈反相關,並且在直徑較小的圓洞中,CSI與拉伸壓力呈正相關。此外,主成分分析 (principal component analysis, PCA) 顯示在每種圓洞大小都有兩種表型(拉伸型和貼覆型),但會表現出不同的機械反應。我們進一步使用藥物blebbistatin 來降低拉伸壓力,並觀察到 hMSCs 展現出較小的突起並傾向於橫跨圓洞。Blebbistatin 主要影響在 100 微米圓洞內的 hMSCs,導致細胞體積、細胞核體積和 YAP 細胞核遷移降低,但在 60 微米圓洞內的 hMSCs 影響不大。綜上所述,我們的結果顯示出在機械生物領域中常研究特徵的新機制。球形圓洞可以控制基質曲率而影響細胞的生長和機械反應,並且可以輕鬆地與拉伸力顯微鏡配合使用,是今後3D機械生物學更多研究的良好模型系統。
摘要(英) Most of our understanding on cell biology is based on two-dimensional (2D) flat substrates while an in vivo microenvironment is intrinsically three-dimensional (3D). How cells sense and respond to the dimensionality is still largely under-explored. Cells sense the microenvironment through traction force and a lot of work has been carried out on 2D. It has been shown that cell-spread area, rigidity, traction stress, and cell volume are strongly coupled on 2D, and these factors affect the cell proliferation or stem cell differentiation through affecting the translocation of transcriptional activator YAP. In contrast, some of the coupled relationships change in 3D and thus make a 3D cell culture an ideal testbed for the current understanding on 2D mechanobiology and provides deeper understanding for 3D cell culture. Though 3D cell culture is a better in vivo mimicking microenvironment for the regenerative medicine and drug screening, its complexity and diversity also make systematic and quantitative studies difficult. It is crucial to simplify 3D cell culture system but keep the essential features of dimensionality. In this thesis, I demonstrate that spherical microwells is a novel tool to study 3D mechanobiology. We developed 3D traction force microscopy based on spherical microwells and identified that human mesenchymal stem cells (hMSCs) exhibit cell-cycle arrest in smaller microwells through reducing transcriptional activator YAP in nucleus. We performed quantitative measurements to test whether the proposed mechanism on 2D regulates YAP translocation in 3D. We examined several quantities in 3D and found some relationships are consistent with the relationships on 2D and some are not. For example, the traction stress is not directly transmitted through perinuclear actin to induce nuclear flattening. We also found that cells in larger microwells have larger cell volume, greater traction stress, and their cell adhesion area has positive correlation with both their cellular and nuclear volume. The relationships between cell volume with traction stress and adhesion area do not agree with previous work on 2D [1]. Nuclear flatness is inversely correlated with both the nuclear YAP translocation and traction stress, indicating a similar trend but not as strong as the 2D counterparts. Their cell shape index (CSI) has anti-correlation with nuclear YAP translocation, and in smaller microwells, CSI has correlation with traction stress. Additionally, principal component analysis shows that two phenotypes (stretchers and stickers) demonstrate distinct mechanical responses inside the microwells despite sharing comparable morphological traits in each microwell size. We further performed blebbistatin to reduce traction stress and we observed that hMSCs show smaller protrusions and they tend to straddle more across the microwell. Blebbistatin treatment affects mostly on hMSCs in 100-µm microwells resulting in reduced cell volume, nuclear volume, and YAP nuclear localization but not so much on hMSCs in 60-µm microwells. Taken together, our investigations show new relationships between quantities commonly investigated in mechanobiology. Spherical microwells provide control on substrate curvature, which affects how cells grow and mechanically respond, and can be implemented with traction stress microscopy easily. It serves as a good model system for more investigation in 3D mechanobiology.
關鍵字(中) ★ 三維細胞培養
★ 三維牽引力顯微鏡
★ 力生物學
★ 利基質曲率
★ 細胞遷移
★ 細胞增殖
關鍵字(英) ★ 3D cell culture
★ 3D TFM
★ mechanobiology
★ substrate curvature
★ cell migration
★ cell proliferation
論文目次 Chinese Abstract i
English Abstract iii
Acknowledgements v
Chapter I. Introduction 1
Chapter II. Results 6
2.1 The proliferation of hMSCs in microwells depends on the size of microwells. 6
2.2 Quantitative morphological features 8
2.3 Average traction stress, strain energy, and contractility is higher in larger microwells 16
2.4 Cell volume, nuclear volume and YAP N/C ratio of stickers and stretchers are similar, but their nuclear flatness, cell surface area, adhesion area, and their mechanical responses in the microwells are distinct. 24
2.5 Blebbistatin treatment alters morphology of hMSCs in 100-μm microwells. 30
Chapter III. Materials and Methods 32
3.1 Fabricating spherical microwells 32
3.2 Cell culture and cell seeding to spherical microwells 33
3.3 EdU proliferation assay 33
3.4 Immunofluorescence staining 33
3.5 Image processing, segmentation and quantification 34
3.7 Particle tracking and surface boundary conditions 39
3.8 Traction force computation and simulation 40
3.9 Traction force microscopy and validation 42
Chapter IV. Discussion 45
References 49
Appendix 51
參考文獻 1. Guo, M., et al., Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proceedings of the National Academy of Sciences, 2017.
2. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-689.
3. McBeath, R., et al., Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental cell, 2004. 6(4): p. 483-495.
4. Thery, M., et al., Cell distribution of stress fibres in response to the geometry of the adhesive environment. Cell Motility and the Cytoskeleton, 2006. 63(6): p. 341-355.
5. Dembo, M., et al., Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophysical Journal, 1996. 70(4): p. 2008-2022.
6. Elosegui-Artola, A., et al., Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear Pores. Cell, 2017. 171(6): p. 1397-1410.e14.
7. Aureille, J., et al., Nuclear envelope deformation controls cell cycle progression in response to mechanical force. EMBO reports, 2019. 20(9): p. e48084.
8. Caliari, S.R., et al., Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments. Biomaterials, 2016. 103: p. 314-323.
9. Chaudhuri, O., et al., Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature Materials, 2016. 15(3): p. 326-334.
10. Scott, K.E., S.I. Fraley, and P. Rangamani, A spatial model of YAP/TAZ signaling reveals how stiffness, dimensionality, and shape contribute to emergent outcomes. Proceedings of the National Academy of Sciences, 2021. 118(20): p. e2021571118.
11. Bao, M., et al., Cellular Volume and Matrix Stiffness Direct Stem Cell Behavior in a 3D Microniche. ACS Appl Mater Interfaces, 2019. 11(2): p. 1754-1759.
12. Bao, M., et al., 3D microniches reveal the importance of cell size and shape. Nat Commun, 2017. 8(1): p. 1962.
13. Schwarz, U.S., et al., Calculation of forces at focal adhesions from elastic substrate data: The effect of localized force and the need for regularization. Biophysical Journal, 2002. 83(3): p. 1380-1394.
14. Legant, W.R., et al., Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nature Methods, 2010. 7(12): p. 969-U113.
15. Soiné, J.R.D., et al., Measuring cellular traction forces on non-planar substrates. Interface Focus, 2016. 6(5): p. 20160024.
16. Huang, C.-K., et al., Spherical microwell arrays for studying single cells and microtissues in 3D confinement. Biofabrication, 2020. 12(2): p. 025016.
17. Panciera, T., et al., Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol, 2017. 18(12): p. 758-770.
18. Nardone, G., et al., YAP regulates cell mechanics by controlling focal adhesion assembly. Nature Communications, 2017. 8(1): p. 15321.
19. Grinnell, F., Fibroblast biology in three-dimensional collagen matrices. Trends in Cell Biology, 2003. 13(5): p. 264-269.
20. Deviri, D. and S.A. Safran, Balance of osmotic pressures determines the nuclear-to-cytoplasmic volume ratio of the cell. Proceedings of the National Academy of Sciences, 2022. 119(21): p. e2118301119.
21. Oakes, Patrick W., et al., Geometry Regulates Traction Stresses in Adherent Cells. Biophysical Journal, 2014. 107(4): p. 825-833.
22. Khatau, S.B., et al., A perinuclear actin cap regulates nuclear shape. Proceedings of the National Academy of Sciences, 2009. 106(45): p. 19017-19022.
23. Huang, C.K., et al., Spherical microwell arrays for studying single cells and microtissues in 3D confinement. Biofabrication, 2020. 12(2): p. 025016.
24. Preibisch, S., et al., Efficient Bayesian-based multiview deconvolution. Nature Methods, 2014. 11(6): p. 645-648.
25. Takigawa, T., et al., Poisson′s ratio of polyacrylamide (PAAm) gels. Polymer Gels and Networks, 1996. 4(1): p. 1-5.
26. Lee, Y.-h., et al., Three-dimensional fibroblast morphology on compliant substrates of controlled negative curvature. Integrative Biology, 2013. 5(12): p. 1447-1455.
27. Wang, Y., et al., Photoluminescence study of the interface fluctuation effect for InGaAs/InAlAs/InP single quantum well with different thickness. Nanoscale Research Letters, 2017. 12(1): p. 1-9.
28. Major, L.G., et al., Volume Adaptation Controls Stem Cell Mechanotransduction. ACS Appl Mater Interfaces, 2019. 11(49): p. 45520-45530.
29. Aragona, M., et al., A Mechanical Checkpoint Controls Multicellular Growth through YAP/TAZ Regulation by Actin-Processing Factors. Cell, 2013. 154(5): p. 1047-1059.
30. Legant, W.R., et al., Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proceedings of the National Academy of Sciences of the United States of America, 2013. 110(3): p. 881-886.
31. Cosgrove, B.D., et al., Nuclear envelope wrinkling predicts mesenchymal progenitor cell mechano-response in 2D and 3D microenvironments. Biomaterials, 2021. 270: p. 120662.
32. Janmey, P.A., D.A. Fletcher, and C.A. Reinhart-King, Stiffness Sensing by Cells. Physiol Rev, 2020. 100(2): p. 695-724.

指導教授 林耿慧(Keng-hui Lin) 審核日期 2023-2-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明